Detection of diabetic macular edema in optical coherence tomography scans using patch based deep learning

Author(s):  
Abhishek Vahadane ◽  
Ameya Joshi ◽  
Kiran Madan ◽  
Tathagato Rai Dastidar
2021 ◽  
Author(s):  
Fangyao Tang ◽  
Xi Wang ◽  
An-ran Ran ◽  
Carmen KM Chan ◽  
Mary Ho ◽  
...  

<a><b>Objective:</b></a> Diabetic macular edema (DME) is the primary cause of vision loss among individuals with diabetes mellitus (DM). We developed, validated, and tested a deep-learning (DL) system for classifying DME using images from three common commercially available optical coherence tomography (OCT) devices. <p><b>Research Design and Methods:</b> We trained and validated two versions of a multi-task convolution neural network (CNN) to classify DME (center-involved DME [CI-DME], non-CI-DME, or absence of DME) using three-dimensional (3D) volume-scans and two-dimensional (2D) B-scans respectively. For both 3D and 2D CNNs, we employed the residual network (ResNet) as the backbone. For the 3D CNN, we used a 3D version of ResNet-34 with the last fully connected layer removed as the feature extraction module. A total of 73,746 OCT images were used for training and primary validation. External testing was performed using 26,981 images across seven independent datasets from Singapore, Hong Kong, the US, China, and Australia. </p> <p><b>Results:</b> In classifying the presence or absence of DME, the DL system achieved area under the receiver operating characteristic curves (AUROCs) of 0.937 (95% CI 0.920–0.954), 0.958 (0.930–0.977), and 0.965 (0.948–0.977) for primary dataset obtained from Cirrus, Spectralis, and Triton OCTs respectively, in addition to AUROCs greater than 0.906 for the external datasets. For the further classification of the CI-DME and non-CI-DME subgroups, the AUROCs were 0.968 (0.940–0.995), 0.951 (0.898–0.982), and 0.975 (0.947–0.991) for the primary dataset and greater than 0.894 for the external datasets. </p> <p><b>Conclusion:</b> We demonstrated excellent performance with a DL system for the automated classification of DME, highlighting its potential as a promising second-line screening tool for patients with DM, which may potentially create a more effective triaging mechanism to eye clinics. </p>


2021 ◽  
Author(s):  
Fangyao Tang ◽  
Xi Wang ◽  
An-ran Ran ◽  
Carmen KM Chan ◽  
Mary Ho ◽  
...  

<a><b>Objective:</b></a> Diabetic macular edema (DME) is the primary cause of vision loss among individuals with diabetes mellitus (DM). We developed, validated, and tested a deep-learning (DL) system for classifying DME using images from three common commercially available optical coherence tomography (OCT) devices. <p><b>Research Design and Methods:</b> We trained and validated two versions of a multi-task convolution neural network (CNN) to classify DME (center-involved DME [CI-DME], non-CI-DME, or absence of DME) using three-dimensional (3D) volume-scans and two-dimensional (2D) B-scans respectively. For both 3D and 2D CNNs, we employed the residual network (ResNet) as the backbone. For the 3D CNN, we used a 3D version of ResNet-34 with the last fully connected layer removed as the feature extraction module. A total of 73,746 OCT images were used for training and primary validation. External testing was performed using 26,981 images across seven independent datasets from Singapore, Hong Kong, the US, China, and Australia. </p> <p><b>Results:</b> In classifying the presence or absence of DME, the DL system achieved area under the receiver operating characteristic curves (AUROCs) of 0.937 (95% CI 0.920–0.954), 0.958 (0.930–0.977), and 0.965 (0.948–0.977) for primary dataset obtained from Cirrus, Spectralis, and Triton OCTs respectively, in addition to AUROCs greater than 0.906 for the external datasets. For the further classification of the CI-DME and non-CI-DME subgroups, the AUROCs were 0.968 (0.940–0.995), 0.951 (0.898–0.982), and 0.975 (0.947–0.991) for the primary dataset and greater than 0.894 for the external datasets. </p> <p><b>Conclusion:</b> We demonstrated excellent performance with a DL system for the automated classification of DME, highlighting its potential as a promising second-line screening tool for patients with DM, which may potentially create a more effective triaging mechanism to eye clinics. </p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Atsushi Fujiwara ◽  
Yuki Kanzaki ◽  
Shuhei Kimura ◽  
Mio Hosokawa ◽  
Yusuke Shiode ◽  
...  

AbstractThis retrospective study was performed to classify diabetic macular edema (DME) based on the localization and area of the fluid and to investigate the relationship of the classification with visual acuity (VA). The fluid was visualized using en face optical coherence tomography (OCT) images constructed using swept-source OCT. A total of 128 eyes with DME were included. The retina was segmented into: Segment 1, mainly comprising the inner nuclear layer and outer plexiform layer, including Henle’s fiber layer; and Segment 2, mainly comprising the outer nuclear layer. DME was classified as: foveal cystoid space at Segment 1 and no fluid at Segment 2 (n = 24), parafoveal cystoid space at Segment 1 and no fluid at Segment 2 (n = 25), parafoveal cystoid space at Segment 1 and diffuse fluid at Segment 2 (n = 16), diffuse fluid at both segments (n = 37), and diffuse fluid at both segments with subretinal fluid (n = 26). Eyes with diffuse fluid at Segment 2 showed significantly poorer VA, higher ellipsoid zone disruption rates, and greater central subfield thickness than did those without fluid at Segment 2 (P < 0.001 for all). These results indicate the importance of the localization and area of the fluid for VA in DME.


Sign in / Sign up

Export Citation Format

Share Document