A low-voltage sinc/sup 2/ decimator implemented by a new circuit technique using floating-gate MOS transistors

Author(s):  
M. Hovin ◽  
D. Wisland ◽  
Y. Berg ◽  
T.S. Lande
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4092
Author(s):  
Grzegorz Blakiewicz ◽  
Jacek Jakusz ◽  
Waldemar Jendernalik

This paper examines the suitability of selected configurations of ultra-low voltage (ULV) oscillators as starters for a voltage boost converter to harvest energy from a thermoelectric generator (TEG). Important properties of particularly promising configurations, suitable for on-chip implementation are compared. On this basis, an improved oscillator with a low startup voltage and a high output voltage swing is proposed. The applicability of n-channel native MOS transistors with negative or near-zero threshold voltage in ULV oscillators is analyzed. The results demonstrate that a near-zero threshold voltage transistor operating in the weak inversion region is most advantageous for the considered application. The obtained results were used as a reference for design of a boost converter starter intended for integration in 180-nm CMOS X-FAB technology. In the selected technology, the most suitable transistor available with a negative threshold voltage was used. Despite using a transistor with a negative threshold voltage, a low startup voltage of 29 mV, a power consumption of 70 µW, and power conversion efficiency of about 1.5% were achieved. A great advantage of the proposed starter is that it eliminates a multistage charge pump necessary to obtain a voltage of sufficient value to supply the boost converter control circuit.


2004 ◽  
Vol 830 ◽  
Author(s):  
P. Dimitrakis ◽  
P. Normand

ABSTRACTCurrent research directions and recent advances in the area of semiconductor nanocrystal floating-gate memory devices are herein reviewed. Particular attention is placed on the advantages, limitations and perspectives of some of the principal new alternatives suggested for improving device performance and reliability. The attractive option of generating Si nanocrystal memories by ion-beam-synthesis (IBS) is discussed with emphasis on the ultra-low-energy (ULE) regime. Pertinent issues related to the fabrication of low-voltage memory cells and the integration of the ULE-IBS technique in manufactory environment are discussed. The effect on device performance of parasitic transistors that form at the channel corner of shallow trench isolated transistors is described in details. It is shown that such parasitic transistors lead to a substantial degradation of the electrical properties of the intended devices and dominates the memory behavior of deep submicronic cells.


Sign in / Sign up

Export Citation Format

Share Document