Gradient based interpolation for division of focal plane polarization imaging sensors

Author(s):  
Shengkui Gao ◽  
Viktor Gruev
2008 ◽  
Author(s):  
Nicolas Lefaudeux ◽  
Nicolas Lechocinski ◽  
Sebastien Breugnot ◽  
Philippe Clemenceau

2014 ◽  
Vol 102 (10) ◽  
pp. 1450-1469 ◽  
Author(s):  
Timothy York ◽  
Samuel Achilefu ◽  
Spencer P. Lake ◽  
Baranidharan Raman ◽  
Viktor Gruev ◽  
...  

Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.


Author(s):  
Alan Boyde ◽  
Milan Hadravský ◽  
Mojmír Petran ◽  
Timothy F. Watson ◽  
Sheila J. Jones ◽  
...  

The principles of tandem scanning reflected light microscopy and the design of recent instruments are fully described elsewhere and here only briefly. The illuminating light is intercepted by a rotating aperture disc which lies in the intermediate focal plane of a standard LM objective. This device provides an array of separate scanning beams which light up corresponding patches in the plane of focus more intensely than out of focus layers. Reflected light from these patches is imaged on to a matching array of apertures on the opposite side of the same aperture disc and which are scanning in the focal plane of the eyepiece. An arrangement of mirrors converts the central symmetry of the disc into congruency, so that the array of apertures which chop the illuminating beam is identical with the array on the observation side. Thus both illumination and “detection” are scanned in tandem, giving rise to the name Tandem Scanning Microscope (TSM). The apertures are arranged on Archimedean spirals: each opposed pair scans a single line in the image.


Author(s):  
Malcolm Brown ◽  
Reynolds M. Delgado ◽  
Michael J. Fink

While light microscopy has been used to image sub-micron objects, numerous problems with diffraction-limitations often preclude extraction of useful information. Using conventional dark-field and phase contrast light microscopy coupled with image processing, we have studied the following objects: (a) polystyrene beads (88nm, 264nm, and 557mn); (b) frustules of the diatom, Pleurosigma angulatum, and the T-4 bacteriophage attached to its host, E. coli or free in the medium. Equivalent images of the same areas of polystyrene beads and T-4 bacteriophages were produced using transmission electron microscopy.For light microscopy, we used a Zeiss universal microscope. For phase contrast observations a 100X Neofluar objective (N.A.=1.3) was applied. With dark-field, a 100X planachromat objective (N.A.=1.25) in combination with an ultra-condenser (N.A.=1.25) was employed. An intermediate magnifier (Optivar) was available to conveniently give magnification settings of 1.25, 1.6, and 2.0. The image was projected onto the back focal plane of a film or television camera with a Carl Zeiss Jena 18X Compens ocular.


Sign in / Sign up

Export Citation Format

Share Document