The high-frequency behavior of the shield in the magnetic-field probes

Author(s):  
C.F.M. Carobbi ◽  
L.M. Millanta ◽  
L. Chiosi
Author(s):  
Metharak Jokpudsa ◽  
Supawat Kotchapradit ◽  
Chanchai Thongsopa ◽  
Thanaset Thosdeekoraphat

High-frequency magnetic field has been developed pervasively. The induction of heat from the magnetic field can help to treat tumor tissue to a certain extent. Normally, treatment by the low-frequency magnetic field needed to be combined with magnetic substances. To assist in the induction of magnetic fields and reduce flux leakage. However, there are studies that have found that high frequencies can cause heat to tumor tissue. In this paper present, a new magnetic application will focus on the analysis of the high-frequency magnetic nickel core with multi-coil. In order to focus the heat energy using a high-frequency magnetic field into the tumor tissue. The magnetic coil was excited by 915 MHz signal and the combination of tissues used are muscle, bone, and tumor. The magnetic power on the heating predicted by the analytical model, the power loss density (2.98e-6 w/m3) was analyzed using the CST microwave studio.


1982 ◽  
Vol 28 (1) ◽  
pp. 19-36 ◽  
Author(s):  
P. Rolland ◽  
S. G. Tagare

The filamentation and collapse of Langmuir waves in a weak magnetic field are analysed in two particular cases of low-frequency acoustic perturbations: (i) adiabatic perturbations which correspond to subsonic collapse, and (ii) nonadiabatic perturbations which correspond to supersonic collapse. Here the existence of Langmuir filaments and Langmuir collapse in a weak magnetic field are due to nonlinear interaction of high-frequency Langmuir waves (which make small angle with the external magnetic field) with low-frequency acoustic perturbations along the magnetic field.


1998 ◽  
Vol 12 (29n31) ◽  
pp. 3292-3295
Author(s):  
Gy. Kovács ◽  
N. Khatiasvili ◽  
T. Porjesz ◽  
I. Vajda

The effect of weak d.c. magnetic field on the interaction between high–T c superconductors and high frequency field has been studied. The magnetic field (Bres) at which the most intensive change in the absorption could be obtained depended on the previously applied field and displayed a hysteretic behaviour but it did not depend on the frequency.


2010 ◽  
Vol 6 (S274) ◽  
pp. 398-400
Author(s):  
K. Kulpa-Dybeł ◽  
K. Otmianowska-Mazur ◽  
B. Kulesza-Żydzik ◽  
G. Kowal ◽  
D. Wóltański ◽  
...  

AbstractWe study the global evolution of the magnetic field and interstellar medium (ISM) of the barred and ringed galaxies in the presence of non-axisymmetric components of the potential, i.e. the bar and/or the oval perturbations. The magnetohydrodynamical dynamo is driven by cosmic rays (CR), which are continuously supplied to the disk by supernova (SN) remnants. Additionally, weak, dipolar and randomly oriented magnetic field is injected to the galactic disk during SN explosions. To compare our results directly with the observed properties of galaxies we construct realistic maps of high-frequency polarized radio emission. The main result is that CR driven dynamo can amplify weak magnetic fields up to few μG within few Gyr in barred and ringed galaxies. What is more, the modelled magnetic field configuration resembles maps of the polarized intensity observed in barred and ringed galaxies.


1993 ◽  
Vol 155 ◽  
pp. 381-381 ◽  
Author(s):  
J.Y. Hu

It is possible that the magnetic field plays important role in the formation of planetary nebulae(Poscoli, 1992). In order to measure the strength of magnetic field in the envelope of protoplanetary nebulae(PPNe) we have used the Max-Planck-Institut fur Radioastronomie 100-m telescope at Effelsberg to obtain the high frequency resolution and high signal-to-noise ratio 1612 MHz spectra of PPNe, IRAS08005-2356, 18276-1431, and 20406+2953 in both circular polarization. The nature of PPN of these objects are confirmed by Slikhuis et al.(1991), Le Bertre(1987), and Hu et al.(1992) based on the extensive optical, infrared and radio molecular line observations.


2017 ◽  
Vol 45 ◽  
pp. 1760045 ◽  
Author(s):  
Hugo Pérez Rojas ◽  
Elizabeth Rodríguez Querts ◽  
Aurora Pérez Martínez

Under the action of field intensities around the Schwinger critical field, a dense electron gas behaves as unidimensional, exerting strong pressure along the applied field. We suggest a model for maintaining the magnetic field self-consistently, by assuming spin parallel pairing leading to a partial bosonization of the electron gas, which is described by a charged vector boson field, able to experience condensation, leading to a ferromagnetic behavior. Our aim is to suggest a possible quantum relativistic self-magnetized jet model. High frequency photons will be deviated also along paths parallel to the external field, leading to a model for a jet. Any addition of matter and/or energy to the electron system, would contribute to increase the kinetic energy along the magnetic field axis, an the jet may extend for long distances.


Author(s):  
Xiao Ping Li ◽  
Z.J. Zhao ◽  
T.B. Oh ◽  
H.L. Seet

In order to develop high sensitivity micro sensors for bio-magnetic field using NiFe electroplated composite sensing elements, it is important to study how different plating processes can affect the magnetic properties in terms of the chemical composition and magnetic structure of the plated layer. In this study, to study the effect of the magnetic field on the magnetic structure of the electroplated NiFe layers, magnetic controlled plating in which a longitudinal magnetic field ranging from 0 to 400 Oe is applied during nanocrystalline electroplating of permalloy Ni80Fe20 layer of 2 µm thick onto a 20 µm diameter Cu wire. The magnetic structure of the plated layers is studied by investigating the Giant magneto-impedance (GMI) effect of the plated layer. GMI has been measured from a frequency range of 100 kHz to 50 MHz. It is observed that under conventional electroplating without an external magnetic controlling field, the anisotropy of the plated layer is generally circumferential as indicted by the double peaks of the MI curves in testing at high frequency. When a longitudinal magnetic field is applied during electroplating, the plated layer shows single peak MI curves, suggesting that the anisotropy is changed from circumferential to longitudinal. The results also show that the sensitivity and resolution of a magnetic field sensor is improved greatly by changing the anisotropy of the plated layer from circumferential to longitudinal.


2010 ◽  
Vol 76 (6) ◽  
pp. 865-873 ◽  
Author(s):  
M. STEFAN ◽  
G. BRODIN ◽  
F. HAAS ◽  
M. MARKLUND

AbstractThrough an extended kinetic model, we study the nonlinear generation of quasi-static magnetic fields by high-frequency fields in a plasma, taking into account the effects of the electron spin. It is found that although the largest part of the nonlinear current in a moderate density, moderate temperature plasma is due to the classical terms, the spin may still give a significant contribution to the magnetic field generation mechanism. Applications of our results are discussed.


Sign in / Sign up

Export Citation Format

Share Document