A control strategy for reducing the torque ripple in low speed operation of direct torque controlled induction motor

Author(s):  
S. Kaboli ◽  
M.R. Zolghadri ◽  
S. Haghbin ◽  
A. Homaifar
Author(s):  
Anmar Kh. Ali ◽  
Riyadh G. Omar

In this, work the finite control set (FCS) model predictive direct current control strategy with constraints, is applied to drive three-phase induction motor (IM) using the well-known field-oriented control. As a modern algorithm approach of control, this kind of algorithm decides the suitable switching combination that brings the error between the desired command currents and the predicated currents, as low as possible, according to the process of optimization. The suggested algorithm simulates the constraints of maximum allowable current and the accepted deviation, between the desired command and actual currents. The new constraints produce an improvement in system performance, with the predefined error threshold. This can be applied by avoiding the switching combination that exceeds the limited values. The additional constraints are more suitable for loads that require minimum distortion in harmonic and offer protection from maximum allowable currents. This approach is valuable especially in electrical vehicle (EV) applications since its result offers more reliable system performance with low total harmonics distortion (THD), low motor torque ripple, and better speed tracking.


2014 ◽  
Vol 496-500 ◽  
pp. 1352-1355
Author(s):  
Chuan Xue Song ◽  
Si Lun Peng ◽  
Shi Xin Song ◽  
Jian Hua Li ◽  
Zhu'an Zheng

According to the characteristics that the motor in wheel is insensitivity of torque ripple, the impact of reducing PWM frequency on motor control is studied, and the phenomenon that the PWM frequency is limited by the lag angle of motor commutation. Then a variable PWM frequency control strategy according to rotate speed is proposed. Based on Simulink, the motor control model is built and the control strategy is verified by simulation. The result shows that the variable PWM frequency control significantly improves the performance of motor at low speed, with little toque ripple increased.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiangsheng Liu ◽  
Lin Ren ◽  
Yuanyuan Yang ◽  
Jun He ◽  
Zhengxin Zhou

In terms of the instability of the full-order observer for the induction motor in the low-speed regenerative mode, the low-speed unstable region which leads to the extension of the commissioning cycle cannot be eliminated by the traditional adaptive law which aims at good system performance. It is proposed that the feedback gain matrix can control both the unstable region and the system performance both. To make a trade-off between the stability and performance by designing the feedback gain matrix is still an open problem. To solve this problem, first we analyze the cause of instability and derive constraints to ensure system stability by establishing a transfer function of the adaptive observing system for the speed. Then, with the derived constraints as the design criteria for the feedback gain matrix, a control strategy combining the weighted adaptive law with the improved feedback gain matrix is proposed to improve the stability at low speed. Finally, by comparing the traditional control strategy with the proposed control strategy through simulations and experiments, we show that the proposed control strategy achieves better performance with higher stability.


2012 ◽  
Vol 433-440 ◽  
pp. 6776-6782
Author(s):  
Yi Feng Wu ◽  
Zhi Quan Deng ◽  
Yu Wang

In order to realize high power and reliability of speed control system, fault-tolerant induction motor control system based on three-level inverter is studied in this paper. Based on three-level inverter, a fault-tolerant inverter topology with an extra leg providing the current path during the post-fault operation is proposed. A corresponding control strategy is investigated to avoid voltage drift of the dc link midpoint. In this paper, an induction motor direct slip linear control (DSLC) is employed and investigated to reduce torque ripple and flux magnitude deviation in three-level system. Both simulation and experimental system have been set up to verify the effectiveness of the proposed control strategy.


2010 ◽  
Vol 29-32 ◽  
pp. 2200-2204
Author(s):  
Xue Zhi Hu ◽  
Guang Qun Nan

Traditional induction motor direct torque control system with the hysteresis loop controller, based on torque error, set the amplitude error to select the inverter switching state, is a Band-Band Control , torque error and stator flux error of level can not be distinguished, switching frequency is not constant, over-sector current and the distortion flux linkage can product low speed torque ripple, affecting the control of the system effect. The paper proposed fuzzy PI control of induction motor direct torque control scheme, a system of principles was introduced, controller parameters was designed by fuzzy theoretical. Finally a full-digital experimental system was built with the TMS320F2812 as the master chip and PM30CSJ060 as an inverter main circuit. Results show that the dynamic and static performance and running smoothly with low-speed is verified.


Sign in / Sign up

Export Citation Format

Share Document