Achieving Low Latency in Massive Access: A Mean-field Approach

Author(s):  
Changkun Li ◽  
Wei Chen ◽  
Khaled B. Letaief
2021 ◽  
pp. 168526
Author(s):  
Martin Puschmann ◽  
João C. Getelina ◽  
José A. Hoyos ◽  
Thomas Vojta

Author(s):  
Jun-Sik Sin

In this paper, we investigate the consequences of ion association, coupled with the considerations of finite size effects and orientational ordering of Bjerrum pairs as well as ions and water...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor N. Karnaukhov

AbstractUsing mean field approach, we provide analytical and numerical solution of the symmetric Anderson lattice for arbitrary dimension at half filling. The symmetric Anderson lattice is equivalent to the Kondo lattice, which makes it possible to study the behavior of an electron liquid in the Kondo lattice. We have shown that, due to hybridization (through an effective field due to localized electrons) of electrons with different spins and momenta $$\mathbf{k} $$ k and $$\mathbf{k} +\overrightarrow{\pi }$$ k + π → , the gap in the electron spectrum opens at half filling. Such hybridization breaks the conservation of the total magnetic momentum of electrons, the spontaneous symmetry is broken. The state of electron liquid is characterized by a large Fermi surface. A gap in the spectrum is calculated depending on the magnitude of the on-site Coulomb repulsion and value of s–d hybridization for the chain, as well as for square and cubic lattices. Anomalous behavior of the heat capacity at low temperatures in the gapped state, which is realized in the symmetric Anderson lattice, was also found.


2015 ◽  
Vol 91 (5) ◽  
Author(s):  
S. Ayik ◽  
O. Yilmaz ◽  
B. Yilmaz ◽  
A. S. Umar ◽  
A. Gokalp ◽  
...  
Keyword(s):  

1994 ◽  
Vol 343 ◽  
Author(s):  
S.C. Wardle ◽  
B.L. Adams ◽  
C.S. Nichols ◽  
D.A. Smith

ABSTRACTIt is well known from studies of individual interfaces that grain boundaries exhibit a spectrum of properties because their structure is misorientation dependent. Usually this variability is neglected and properties are modeled using a mean field approach. The limitations inherent in this approach can be overcome, in principle, using a combination of experimental techniques, theory and modeling. The bamboo structure of an interconnect is a particularly simple polycrystalline structure that can now be readily characterized experimentally and modeled in the computer. The grain misorientations in a [111] textured aluminum line have been measured using the new automated technique of orientational imaging microscopy. By relating boundary angle to diffusivity the expected stress voiding failure processes can be predicted through the link between misorientation angle, grain boundary excess free energy and diffusivity. Consequently it can be shown that the high energy boundaries are the favored failure sites thermodynamically and kinetically.


2008 ◽  
Vol 17 (09) ◽  
pp. 1765-1773 ◽  
Author(s):  
JIGUANG CAO ◽  
ZHONGYU MA ◽  
NGUYEN VAN GIAI

The microscopic properties and superfluidity of the inner crust in neutron stars are investigated in the framework of the relativistic mean field(RMF) model and BCS theory. The Wigner-Seitz(W-S) cell of inner crust is composed of neutron-rich nuclei immersed in a sea of dilute, homogeneous neutron gas. The pairing properties of nucleons in the W-S cells are treated in BCS theory with Gogny interaction. In this work, we emphasize on the choice of the boundary conditions in the RMF approach and superfluidity of the inner crust. Three kinds of boundary conditions are suggested. The properties of the W-S cells with the three kinds of boundary conditions are investigated. The neutron density distributions in the RMF and Hartree-Fock-Bogoliubov(HFB) models are compared.


Sign in / Sign up

Export Citation Format

Share Document