Enabling Low-Cost Full Surface Tactile Skin for Human Robot Interaction

Author(s):  
Xiaoran Fan ◽  
Daewon Lee ◽  
Lawrence Jackel ◽  
Richard Howard ◽  
Daniel Lee ◽  
...  
Sensor Review ◽  
2015 ◽  
Vol 35 (3) ◽  
pp. 244-250 ◽  
Author(s):  
Pedro Neto ◽  
Nuno Mendes ◽  
A. Paulo Moreira

Purpose – The purpose of this paper is to achieve reliable estimation of yaw angles by fusing data from low-cost inertial and magnetic sensing. Design/methodology/approach – In this paper, yaw angle is estimated by fusing inertial and magnetic sensing from a digital compass and a gyroscope, respectively. A Kalman filter estimates the error produced by the gyroscope. Findings – Drift effect produced by the gyroscope is significantly reduced and, at the same time, the system has the ability to react quickly to orientation changes. The system combines the best of each sensor, the stability of the magnetic sensor and the fast response of the inertial sensor. Research limitations/implications – The system does not present a stable behavior in the presence of large vibrations. Considerable calibration efforts are needed. Practical implications – Today, most of human–robot interaction technologies need to have the ability to estimate orientation, especially yaw angle, from small-sized and low-cost sensors. Originality/value – Existing methods for inertial and magnetic sensor fusion are combined to achieve reliable estimation of yaw angle. Experimental tests in a human–robot interaction scenario show the performance of the system.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hua Minh Tuan ◽  
Filippo Sanfilippo ◽  
Nguyen Vinh Hao

Collaborative robots (or cobots) are robots that can safely work together or interact with humans in a common space. They gradually become noticeable nowadays. Compliant actuators are very relevant for the design of cobots. This type of actuation scheme mitigates the damage caused by unexpected collision. Therefore, elastic joints are considered to outperform rigid joints when operating in a dynamic environment. However, most of the available elastic robots are relatively costly or difficult to construct. To give researchers a solution that is inexpensive, easily customisable, and fast to fabricate, a newly-designed low-cost, and open-source design of an elastic joint is presented in this work. Based on the newly design elastic joint, a highly-compliant multi-purpose 2-DOF robot arm for safe human-robot interaction is also introduced. The mechanical design of the robot and a position control algorithm are presented. The mechanical prototype is 3D-printed. The control algorithm is a two loops control scheme. In particular, the inner control loop is designed as a model reference adaptive controller (MRAC) to deal with uncertainties in the system parameters, while the outer control loop utilises a fuzzy proportional-integral controller to reduce the effect of external disturbances on the load. The control algorithm is first validated in simulation. Then the effectiveness of the controller is also proven by experiments on the mechanical prototype.


2009 ◽  
Vol 6 (3-4) ◽  
pp. 369-397 ◽  
Author(s):  
Kerstin Dautenhahn ◽  
Chrystopher L. Nehaniv ◽  
Michael L. Walters ◽  
Ben Robins ◽  
Hatice Kose-Bagci ◽  
...  

This paper provides a comprehensive introduction to the design of the minimally expressive robot KASPAR, which is particularly suitable for human–robot interaction studies. A low-cost design with off-the-shelf components has been used in a novel design inspired from a multi-disciplinary viewpoint, including comics design and Japanese Noh theatre. The design rationale of the robot and its technical features are described in detail. Three research studies will be presented that have been using KASPAR extensively. Firstly, we present its application in robot-assisted play and therapy for children with autism. Secondly, we illustrate its use in human–robot interaction studies investigating the role of interaction kinesics and gestures. Lastly, we describe a study in the field of developmental robotics into computational architectures based on interaction histories for robot ontogeny. The three areas differ in the way as to how the robot is being operated and its role in social interaction scenarios. Each will be introduced briefly and examples of the results will be presented. Reflections on the specific design features of KASPAR that were important in these studies and lessons learnt from these studies concerning the design of humanoid robots for social interaction will also be discussed. An assessment of the robot in terms of utility of the design for human–robot interaction experiments concludes the paper.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1445
Author(s):  
Keya Ghonasgi ◽  
Saad N. Yousaf ◽  
Paria Esmatloo ◽  
Ashish D. Deshpande

Measurement of interaction forces distributed across the attachment interface in wearable devices is critical for understanding ergonomic physical human–robot interaction (pHRI). The main challenges in sensorization of pHRI interfaces are (i) capturing the fine nature of force transmission from compliant human tissue onto rigid surfaces in the wearable device and (ii) utilizing a low-cost and easily implementable design that can be adapted for a variety of human interfaces. This paper addresses both challenges and presents a modular sensing panel that uses force-sensing resistors (FSRs) combined with robust electrical and mechanical integration principles that result in a reliable solution for distributed load measurement. The design is demonstrated through an upper-arm cuff, which uses 24 sensing panels, in conjunction with the Harmony exoskeleton. Validation of the design with controlled loading of the sensorized cuff proves the viability of FSRs in an interface sensing solution. Preliminary experiments with a human subject highlight the value of distributed interface force measurement in recognizing the factors that influence ergonomic pHRI and elucidating their effects. The modular design and low cost of the sensing panel lend themselves to extension of this approach for studying ergonomics in a variety of wearable applications with the goal of achieving safe, comfortable, and effective human–robot interaction.


Sign in / Sign up

Export Citation Format

Share Document