scholarly journals Detection of Freezing of Gait using Convolutional Neural Networks and Data from Lower Limb Motion Sensors

Bohan Shi ◽  
Ee Beng Arthur Tay ◽  
Wing Lok Au ◽  
Dawn May Leng Tan ◽  
Nicole Shuang Yu Chia ◽  
Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6672
Ji-Hyeok Jeong ◽  
Jun-Hyuk Choi ◽  
Keun-Tae Kim ◽  
Song-Joo Lee ◽  
Dong-Joo Kim ◽  

Motor imagery (MI) brain–computer interfaces (BCIs) have been used for a wide variety of applications due to their intuitive matching between the user’s intentions and the performance of tasks. Applying dry electroencephalography (EEG) electrodes to MI BCI applications can resolve many constraints and achieve practicality. In this study, we propose a multi-domain convolutional neural networks (MD-CNN) model that learns subject-specific and electrode-dependent EEG features using a multi-domain structure to improve the classification accuracy of dry electrode MI BCIs. The proposed MD-CNN model is composed of learning layers for three domain representations (time, spatial, and phase). We first evaluated the proposed MD-CNN model using a public dataset to confirm 78.96% classification accuracy for multi-class classification (chance level accuracy: 30%). After that, 10 healthy subjects participated and performed three classes of MI tasks related to lower-limb movement (gait, sitting down, and resting) over two sessions (dry and wet electrodes). Consequently, the proposed MD-CNN model achieved the highest classification accuracy (dry: 58.44%; wet: 58.66%; chance level accuracy: 43.33%) with a three-class classifier and the lowest difference in accuracy between the two electrode types (0.22%, d = 0.0292) compared with the conventional classifiers (FBCSP, EEGNet, ShallowConvNet, and DeepConvNet) that used only a single domain. We expect that the proposed MD-CNN model could be applied for developing robust MI BCI systems with dry electrodes.

2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.

Sign in / Sign up

Export Citation Format

Share Document