Modeling Large-Size Round Steel Plates With Surface PEEC Method for Lightning Transient Analysis

Author(s):  
Jianhua Jia ◽  
Li Shi ◽  
Jikai Si
2015 ◽  
Vol 1122 ◽  
pp. 257-260
Author(s):  
Martin Vild ◽  
Miroslav Bajer

This paper refers to behaviour and capacity of axially loaded columns strengthened under load using welded steel plates. This method of strengthening is fast, simple and widely used but no universal and reliable analytical solution has been presented yet. In the paper, focus is put on flexural buckling. The approach using cross-section properties of strengthened member and the modified buckling reduction factor was used to calculate the ultimate resistance. In buckling theory, the resistance of column subjected to compression load is reached when the most stressed fibres start to yield. However, some researchers allow certain amount of yielding for base material of columns strengthened under load. In the paper, the new modified buckling reduction factor based on Eurocodes is derived. Two types of column strengthening under various preload magnitudes are investigated using finite element study in ANSYS code and transient analysis type. Birth and death of elements is used to simulate strengthening welded plates. The results are compared with analytical solutions.


2010 ◽  
Vol 146-147 ◽  
pp. 937-940
Author(s):  
Xiang Dong Huo ◽  
Zhang Guo Lin ◽  
Yu Tao Zhao ◽  
Yu Qian Li

In order to develop low carbon bainitic Cr-B steel, experimental procedures including melting, thermal simulation study and laboratory hot rolling were adopted. The dynamic CCT diagram was established, microstructure and properties of experimental steel were also analyzed. The transformation temperature of experimental steel lies between 650~400°C and final microstructure changes fromquasi-polygonal ferrite, granular bainite to lath bainite as cooling rate increases from 0.2 to 50°C.s-1. The microstructure of steel plates, air cooled or water cooled to 530°C then air cooled, is mainly composed of granular bainite and quasi-polygonal ferrite, and the large size islands in granular bainite are responsible for the low strength and poor toughness. However, steel plate with lath bainite, water cooled to roomtemperature, boasts high yield strength (672MPa) and superior impact toughness (127J at -20°C). Therefore, it is feasible to produce low carbon bainitic Cr-B steel with high strength and good toughness through controlling cooling parameters.


2018 ◽  
Vol 122 ◽  
pp. 62-68 ◽  
Author(s):  
Jae Sung Shin ◽  
Seong Yong Oh ◽  
Hyunmin Park ◽  
Chin-Man Chung ◽  
Sangwoo Seon ◽  
...  

Author(s):  
R. A. Ricks ◽  
Angus J. Porter

During a recent investigation concerning the growth of γ' precipitates in nickel-base superalloys it was observed that the sign of the lattice mismatch between the coherent particles and the matrix (γ) was important in determining the ease with which matrix dislocations could be incorporated into the interface to relieve coherency strains. Thus alloys with a negative misfit (ie. the γ' lattice parameter was smaller than the matrix) could lose coherency easily and γ/γ' interfaces would exhibit regularly spaced networks of dislocations, as shown in figure 1 for the case of Nimonic 115 (misfit = -0.15%). In contrast, γ' particles in alloys with a positive misfit could grow to a large size and not show any such dislocation arrangements in the interface, thus indicating that coherency had not been lost. Figure 2 depicts a large γ' precipitate in Nimonic 80A (misfit = +0.32%) showing few interfacial dislocations.


Author(s):  
H. Weiland ◽  
D. P. Field

Recent advances in the automatic indexing of backscatter Kikuchi diffraction patterns on the scanning electron microscope (SEM) has resulted in the development of a new type of microscopy. The ability to obtain statistically relevant information on the spatial distribution of crystallite orientations is giving rise to new insight into polycrystalline microstructures and their relation to materials properties. A limitation of the technique in the SEM is that the spatial resolution of the measurement is restricted by the relatively large size of the electron beam in relation to various microstructural features. Typically the spatial resolution in the SEM is limited to about half a micron or greater. Heavily worked structures exhibit microstructural features much finer than this and require resolution on the order of nanometers for accurate characterization. Transmission electron microscope (TEM) techniques offer sufficient resolution to investigate heavily worked crystalline materials.Crystal lattice orientation determination from Kikuchi diffraction patterns in the TEM (Figure 1) requires knowledge of the relative positions of at least three non-parallel Kikuchi line pairs in relation to the crystallite and the electron beam.


Author(s):  
Patricia G. Calarco ◽  
Margaret C. Siebert

Visualization of preimplantation mammalian embryos by electron microscopy is difficult due to the large size of the ircells, their relative lack of internal structure, and their highly hydrated cytoplasm. For example, the fertilized egg of the mouse is a single cell of approximately 75μ in diameter with little organized cytoskelet on and apaucity ofor ganelles such as endoplasmic reticulum (ER) and Golgi material. Thus, techniques that work well on tissues or cell lines are often not adaptable to embryos at either the LM or EM level.Over several years we have perfected techniques for visualization of mammalian embryos by LM and TEM, SEM and for the pre-embedding localization of antigens. Post-embedding antigenlocalization in thin sections of mouse oocytes and embryos has presented a more difficult challenge and has been explored in LR White, LR Gold, soft EPON (after etching of sections), and Lowicryl K4M. To date, antigen localization has only been achieved in Lowicryl-embedded material, although even with polymerization at-40°C, the small ER vesicles characteristic of embryos are unrecognizable.


Author(s):  
K. Ohi ◽  
M. Mizuno ◽  
T. Kasai ◽  
Y. Ohkura ◽  
K. Mizuno ◽  
...  

In recent years, with electron microscopes coming into wider use, their installation environments do not necessarily give their performance full play. Their environmental conditions include air-conditioners, magnetic fields, and vibrations. We report a jointly developed entirely new vibration isolator which is effective against the vibrations transmitted from the floor.Conventionally, large-sized vibration isolators which need the digging of a pit have been used. These vibration isolators, however, are large present problems of installation and maintenance because of their large-size.Thus, we intended to make a vibration isolator which1) eliminates the need for changing the installation room2) eliminates the need of maintenance and3) are compact in size and easily installable.


Methodology ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. 97-105
Author(s):  
Rodrigo Ferrer ◽  
Antonio Pardo

Abstract. In a recent paper, Ferrer and Pardo (2014) tested several distribution-based methods designed to assess when test scores obtained before and after an intervention reflect a statistically reliable change. However, we still do not know how these methods perform from the point of view of false negatives. For this purpose, we have simulated change scenarios (different effect sizes in a pre-post-test design) with distributions of different shapes and with different sample sizes. For each simulated scenario, we generated 1,000 samples. In each sample, we recorded the false-negative rate of the five distribution-based methods with the best performance from the point of view of the false positives. Our results have revealed unacceptable rates of false negatives even with effects of very large size, starting from 31.8% in an optimistic scenario (effect size of 2.0 and a normal distribution) to 99.9% in the worst scenario (effect size of 0.2 and a highly skewed distribution). Therefore, our results suggest that the widely used distribution-based methods must be applied with caution in a clinical context, because they need huge effect sizes to detect a true change. However, we made some considerations regarding the effect size and the cut-off points commonly used which allow us to be more precise in our estimates.


2020 ◽  
Vol 27 (1) ◽  
pp. 1-4
Author(s):  
Fatan Abshari ◽  
Zulfikar Ali

Objective: Transurethral lithotripsy using Holmium-YAG laser has been reported to be beneficial in breaking up bladder stones with large size (>4cm in diameter) with lower risk of mucosal injury and hematuria. The aim of this study is to evaluate the utilization of Holmium-YAG laser for the management of bladder stones at Kardinah General Hospital, Tegal. Material & Methods: This is a cross-sectional study conducted from January 2017 to March 2017. Patient’s demography, which included age, sex, length of surgery, stone size, and laser’s energy count were recorded. Results: We included 120 patients in this study. Mean of patients age in this study was 51.93 years old with age range were 41-85 years old. Most of the patients were male (109 vs 11) with a mean size of stone 25.09 ± 3.04 mm. Length of surgery ranges from 15 to 75 minutes and mean energy of the laser 28.99 ± 19.34 kJ. There was 100% stone’s clearance following surgery with no major complication occurred. Conclusion: Holmium-YAG laser is effective in managing bladder stones at Kardinah General Hospital particularly for large size stones. Length of surgery and energy of laser used depend on the stone size in which bigger stone size is associated with longer surgery time and bigger laser energy needed.


Sign in / Sign up

Export Citation Format

Share Document