A Proposed On-Die Oscilloscope for Monitoring of Power Noise Waveform Inside IC Due to Transient Stress Events

Author(s):  
Zakirbek Mamatair uulu ◽  
Jung-Hoon Cho ◽  
Bumhee Bae ◽  
Jingook Kim
Keyword(s):  
Author(s):  
Gubtha Mahendra Putra ◽  
Edy Budiman ◽  
Yonatan Malewa ◽  
Dedy Cahyadi ◽  
Medi Taruk ◽  
...  

Author(s):  
Junhao Huang ◽  
Fang Fang ◽  
Zhihua Wang ◽  
Mingxuan Hang ◽  
Yibo Wang ◽  
...  

1982 ◽  
Vol 2 (1) ◽  
pp. 13-13
Author(s):  
Derek A. Pocock ◽  
Ali A. Landauer
Keyword(s):  

2013 ◽  
Vol 397-400 ◽  
pp. 413-417
Author(s):  
Chang Hui Hou ◽  
Hong Li Fan ◽  
Qian Sang ◽  
Ji Ping Lu

In this paper, a model of an engine case is designed in Pro/Engineer for fatigue simulation. The meshing is created by the way of Abaqus. According to the working conditions, the boundary restriction of the simulation is defined. By the simulation, the heat distribution of the engine case is given, the causes of relatively high temperature areas are discussed, and the heat-stress distribution is drawn too. The high stress area in the engine case is discovered. The simulation result shows that the steady working stress is about 60MPa, the transient stress is between 90MPa to 120MPa, and the maximal stress is 136MPa. Based on the heat stress the fatigue life of the engine case is analyzed. The research result is a reference of the engine case safe working.


2002 ◽  
Vol 37 (3) ◽  
pp. 187-199 ◽  
Author(s):  
H. J Kim ◽  
J. S Kim ◽  
M. E Walter ◽  
J. K Lee

Intumescent mat materials in catalytic converters undergo chemical reactions that lead to material property changes and volume expansion during heating processes. Dead weight (load control) and displacement control compression experiments have been performed to explore static and transient stress-strain responses. The apparatus and methods for both experiments are described. The experimental results together with a strain decomposition procedure yield a master curve that can be employed for constitutive modelling.


1962 ◽  
Vol 29 (1) ◽  
pp. 23-29 ◽  
Author(s):  
W. F. Riley ◽  
A. J. Durelli

When two arrays of lines are superimposed an optical phenomenon known as the moire effect is observed under certain conditions. This moire effect is used by the authors to determine the distribution of transient strains on the surface of two-dimensional bodies. The method can be used to solve completely the strain-distribution problem or it can be used in combination with photoelasticity to separate the principal stresses. The methods used in interpreting the moire fringe patterns and the techniques used to produce the patterns are described in the paper. Two applications are discussed.


Sign in / Sign up

Export Citation Format

Share Document