Review of Closed-Loop Brain–Machine Interface Systems From a Control Perspective

Author(s):  
Hongguang Pan ◽  
Haoqian Song ◽  
Qi Zhang ◽  
Wenyu Mi
Author(s):  
Qiaosheng Zhang ◽  
Sile Hu ◽  
Robert Talay ◽  
Zhengdong Xiao ◽  
David Rosenberg ◽  
...  

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Moshu Qian ◽  
Guanghua Zhong ◽  
Xinggang Yan ◽  
Heyuan Wang ◽  
Yang Cui

In this study, a closed-loop brain stimulation control system scheme for epilepsy seizure abatement is designed by brain-machine interface (BMI) technique. In the controller design process, the practical parametric uncertainties involving cerebral blood flow, glucose metabolism, blood oxygen level dependence, and electromagnetic disturbances in signal control are considered. An appropriate transformation is introduced to express the system in regular form for design and analysis. Then, sufficient conditions are developed such that the sliding motion is asymptotically stable. Combining Caputo fractional order definition and neural network (NN), a finite time fractional order sliding mode (FFOSM) controller is designed to guarantee reachability of the sliding mode. The stability and reachability analysis of the closed-loop tracking control system gives the guideline of parameter selection, and simulation results based on comprehensive comparisons are carried out to demonstrate the effectiveness of proposed approach.


2021 ◽  
Author(s):  
Liljana Bozinovska ◽  
Bozinovski Adrijan

This paper reviews efforts in a new direction of the EEG research, the direction of EEG emulated control circuits. Those devices are used in brain computer interface (BCI) research. BCI was introduced 1973 as a challenge of using EEG signals to control objects external to the human body. In 1988 an EEG-emulated switch was used in a brain machine interface (BMI) for control of a mobile robot. The same year a closed loop CNV paradigm was used in a BMI to control a buzzer. In 2005 a CNV flip-flop was introduced which opened the direction of EEG-emulated control circuits. The CNV flip-flop was used for BMI control of a robotic arm in 2009, and for control of two robotic arms in 2011. In 2015 an EEG demultiplexer was introduced. The EEG emulated demultiplexer demonstrated control of a robotic arm to avoid an obstacle. The concept of an EEG emulated modem was also introduced. This review is a contribution toward investigation in this new direction of EEG research.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hamid Fekri Azgomi ◽  
Jin-Oh Hahn ◽  
Rose T. Faghih

Hypercortisolism or Cushing's disease, which corresponds to the excessive levels of cortisol hormone, is associated with tiredness and fatigue during the day and disturbed sleep at night. Our goal is to employ a wearable brain machine interface architecture to regulate one's energy levels in hypercortisolism. In the present simulation study, we generate multi-day cortisol profile data for ten subjects both in healthy and disease conditions. To relate an internal hidden cognitive energy state to one's cortisol secretion patterns, we employ a state-space model. Particularly, we consider circadian upper and lower bound envelopes on cortisol levels, and timings of hypothalamic pulsatile activity underlying cortisol secretions as continuous and binary observations, respectively. To estimate the hidden cognitive energy-related state, we use Bayesian filtering. In our proposed architecture, we infer one's cognitive energy-related state using wearable devices rather than monitoring the brain activity directly and close the loop utilizing fuzzy control. To model actuation in the real-time closed-loop architecture, we simulate two types of medications that result in increasing and decreasing the energy levels in the body. Finally, we close the loop using a knowledge-based control approach. The results on ten simulated profiles verify how the proposed architecture is able to track the energy state and regulate it using hypothetical medications. In a simulation study based on experimental data, we illustrate the feasibility of designing a wearable brain machine interface architecture for energy regulation in hypercortisolism. This simulation study is a first step toward the ultimate goal of managing hypercortisolism in real-world situations.


Sign in / Sign up

Export Citation Format

Share Document