Purcell's three-link microswimmer based on IPMC: Simulations in COMSOL Multiphysics

2022 ◽  
Vol 20 (3) ◽  
pp. 474-480
Author(s):  
Andres J. Serrano ◽  
Cristina Nuevo-Gallardo ◽  
Jose Emilio Traver ◽  
Ines Tejado ◽  
Blas M. Vinagre
Keyword(s):  
2021 ◽  
Vol 572 (1) ◽  
pp. 94-105
Author(s):  
Mohamed Moustafa ◽  
Ghaylen Laouini ◽  
Mostafa ElNaggar ◽  
Tariq AlZoubi

Author(s):  
Vinyas Mahesh ◽  
Vishwas Mahesh ◽  
Dineshkumar Harursampath ◽  
Ahmed E Abouelregal

This article deals with the modeling of magneto-electro-elastic auxetic structures and developing a methodology in COMSOL Multiphysics® to assess the free vibration response of such structures when subjected to various electromagnetic circuit conditions. The triple energy interaction between elastic, magnetic, and electric fields are established in the COMSOL Multiphysics® using structural mechanics and electromagnetic modules. The multiphase magneto-electro-elastic material with different percentages of piezoelectric and piezomagnetic phases are used as the material. In the solid mechanics module, the piezoelectric and piezomagnetic materials were created in stress-charge and stress-magnetization forms, respectively. The electric and magnetic fields are defined in COMSOL Multiphysics® through electromagnetic equations. Further, the customized controlled meshing constituted of free tetrahedral and triangular elements is adapted to trade-off between the accuracy and the computational expenses. The eigenvalue analysis is performed to obtain the natural frequencies of the MEE re-entrant auxetic structures. Also, the efficiency of smart auxetic structures over conventional honeycomb structures is presented throughout the manuscript. In addition, the discrepancy in the natural frequencies of the structures considering coupled and uncoupled state is also illustrated. It is believed that the modeling procedure and its outcomes serve as benchmark solutions for further design and analysis of smart auxetic magneto-electro-elastic structures.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
A. Bendaraa ◽  
My. M. Charafi ◽  
A. Hasnaoui

AbstractIn this study, we investigate the thermal behaviour of nanofluids in a double-pipe heat exchanger. It is about a counterflow configuration, designed to cool a lubrication unit of a thermoelectric power plant. The subject of this work is to evaluate the thermal performances of the exchanger by using a nanofluid based on alumina suspension comparing with deionized water. In order to evaluate the thermal performance of the studied configuration, we carried out numerical experiments in an application developed on COMSOL Multiphysics environment, these experiments are utilized to show the feasibility of this application. As result, we found that the nanofluid with an increase in its volume fraction leads to an increase in the overall exchange coefficient, the convective heat transfer coefficient, as well as the efficiency and the power of the exchanger. It is noted that an increase of 1% in volume fraction, can enhance the overall exchange coefficient, the power and the effectiveness of the exchanger by 17.62%, 1.473% and 10.80% respectively. Besides, it is noted that the increase in the concentration of nanofluids leads to a narrowing of the pinch points of the inlet and outlet temperatures, which means that nanofluids are more efficient in cooling temperatures than conventional fluids.


2020 ◽  
Vol 330 ◽  
pp. 01005
Author(s):  
Abderrahmane AISSA ◽  
Mohamed Amine MEDEBBER ◽  
Khaled Al-Farhany ◽  
Mohammed SAHNOUN ◽  
Ali Khaleel Kareem ◽  
...  

Natural convection of a magneto hydrodynamic nanofluid in a porous cavity in the presence of a magnetic field is investigated. The two vertical side walls are held isothermally at temperatures Th and Tc, while the horizontal walls of the outer cone are adiabatic. The governing equations obtained with the Boussinesq approximation are solved using Comsol Multiphysics finite element analysis and simulation software. Impact of Rayleigh number (Ra), Hartmann number (Ha) and nanofluid volume fraction (ϕ) are depicted. Results indicated that temperature gradient increases considerably with enhance of Ra and ϕ but it reduces with increases of Ha.


Sign in / Sign up

Export Citation Format

Share Document