Experimental Analysis of Root Causes for Rotor-Speed-Dependent Emissions from Type 3 Wind Turbines

Author(s):  
Behnam Nouri ◽  
ukasz Hubert Kocewiak ◽  
Torben Jersch ◽  
Gesa Quistorf ◽  
Christian Fenselau ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4626
Author(s):  
Faris Alatar ◽  
Ali Mehrizi-Sani

Integration of wind energy resources into the grid creates several challenges for power system dynamics. More specifically, Type-3 wind turbines are susceptible to subsynchronous control interactions (SSCIs) when they become radially connected to a series-compensated transmission line. SSCIs can cause disruptions in power generation and can result in significant damage to wind farm (WF) components and equipment. This paper proposes an approach to mitigate SSCIs using an online frequency scan, with optimized phase angles of voltage harmonic injection to maintain steady-state operation, to modify the controllers or the operating conditions of the wind turbine. The proposed strategy is simulated in PSCAD/EMTDC software on the IEEE second benchmark model for subsynchronous resonance. Simulation results demonstrate the effectiveness of this strategy by ensuring oscillations do not grow.


2020 ◽  
Vol 190 ◽  
pp. 00019
Author(s):  
Katherin Indriawati ◽  
Choirul Mufit ◽  
Andi Rahmadiansah

The variation of wind speed causes the electric power generated by the turbine also varies. To obtain maximum power, the rotor speed of wind turbines must be optimally rated. The rotor speed can be controlled by manipulating the torque from the generator; this method is called Torque Control. In that case, a DC-DC converter is needed as the control actuator. In this study, a buck converter-based supervisory control design was performed on the Horizontal-axis wind turbines (HAWT). Supervisory control is composed of two control loops arranged in cascade, and there is a formula algorithm as the supervisory level. The primary loop uses proportional control mode with a proportional gain of 0.3, whereas in the secondary loop using proportional-integral control mode with a proportional gain of 5.2 and an integral gain of 0.1. The Supervisory control has been implemented successfully and resulted in an average increase in turbine power of 4.1 % at 5 m s–1 and 10.58 % at 6 m s–1 and 11.65 % at 7 m s–1, compared to wind turbine systems without speed control.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3039 ◽  
Author(s):  
Andrés Honrubia-Escribano ◽  
Francisco Jiménez-Buendía ◽  
Jorge Luis Sosa-Avendaño ◽  
Pascal Gartmann ◽  
Sebastian Frahm ◽  
...  

The participation of wind power in the energy mix of current power systems is progressively increasing, with variable-speed wind turbines being the leading technology in recent years. In this line, dynamic models of wind turbines able to emulate their response against grid disturbances, such as voltage dips, are required. To address this issue, the International Electronic Commission (IEC) 61400-27-1, published in 2015, defined four generic models of wind turbines for transient stability analysis. To achieve a widespread use of these generic wind turbine models, validations with field data are required. This paper performs the validation of three generic IEC 61400-27-1 variable-speed wind turbine model topologies (type 3A, type 3B and type 4A). The validation is implemented by comparing simulation results with voltage dip measurements performed on six different commercial wind turbines based on field campaigns conducted by three wind turbine manufacturers. Both IEC validation approaches, the play-back and the full system simulation, were implemented. The results show that the generic full-scale converter topology is accurately adjusted to the different real wind turbines and, hence, manufacturers are encouraged to the develop generic IEC models.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Knud A. Kragh ◽  
Paul A. Fleming ◽  
Andrew K. Scholbrock

When extracting energy from the wind using upwind, horizontal-axis wind turbines, a primary condition for ensuring maximum power yield is the ability to align the rotor axis with the dominating wind direction. Attempts have been made to improve the yaw alignment of wind turbines by applying advanced measurement technologies, such as light detection and ranging systems. However, application of advanced measurement equipment is associated with additional costs and increased system complexity. This study is focused on assessing the current performance of an operating turbine and exploring how the yaw alignment can be improved using measurements from the existing standard measurements system. By analyzing data from a case turbine and a corresponding meteorological mast, a correction scheme for the original yaw control system is suggested. The correction scheme is applied to the case turbine and tested. Results show that, with the correction scheme in place, the yaw alignment of the case turbine is improved and the yaw error is reduced to the vicinity of zero degrees. As a result of the improved yaw alignment, an increased power capture is observed for below-rated wind speeds.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Younes Ait El Maati ◽  
Lhoussain El Bahir ◽  
Khalid Faitah

This paper presents a method to control the rotor speed of wind turbines in presence of gearbox efficiency fault. This kind of faults happens due to lack of lubrication. It affects the dynamic of the principal shaft and thus the rotor speed. The principle of the fault tolerant control is to find a bloc that equalizes the dynamics of the healthy and faulty situations. The effectiveness decrease impacts on not only the dynamics but also the steady state value of the rotor speed. The last reason makes it mandatory to add an integral term on the steady state error to cancel the residual between the measured and operating point rotor speed. The convergence of the method is proven with respect to the rotor parameters and its effectiveness is evaluated through the rotor speed.


2017 ◽  
Vol 32 (4) ◽  
pp. 2799-2809 ◽  
Author(s):  
Jiabing Hu ◽  
Li Sun ◽  
Xiaoming Yuan ◽  
Shuo Wang ◽  
Yongning Chi

Author(s):  
Seyed Mojtaba Hosseini Bafoghi ◽  
Hamidreza Khezri

In this paper, a mathematical method is proposed to control the output frequency of a self-excited induction generator using wind turbines and static loads. A dynamic model of the wind turbine is implemented to model the Connections and fittings of the wind turbine to convert the wing energy to electrical energy. Also a PID controller system is proposed to control the rotor speed of the wind turbine. The proposed mathematical model is developed in MATLAB-Simulink software. The simulation results showed that the developed controller can be used to control the wind turbine velocity.


Sign in / Sign up

Export Citation Format

Share Document