A Market Framework for Collaboration Between Distribution System Operator and Green Bank Agent

Author(s):  
Arash Asrari ◽  
Meisam Ansari ◽  
Ehsan Naderi
2021 ◽  
Vol 231 ◽  
pp. 01002
Author(s):  
Zahid Ullah ◽  
Nayyar Hussain Mirjat

Integrating decentralised energy sources into the traditional distribution networks can result in technical issues impacting the power quality. Innovative ideas are, therefore, needed to promote the transformation of systems to a smart grid. Distribution System operator (DSO) could make use of the flexibility of emerging technologies as a method to address these power quality issues. This study aims to present an overview of a local flexibility market (LFM) which will allow DSO requirements to be fulfilled through the (VPP) as an energy flexibility provider. The required optimization loads, generators and as well as storage units, are undertaken in the general algebraic modeling simulation (GAMS) environment. The aim of the optimization problem is to provide DSOs the opportunity to increase or curtail the local generations and loads in order to satisfy their requirement. The VPP will then be responsible for handling the relevant requests in real time to ensure the correct operating schedule of a resource is applied. The preliminary results of simulation studies presented in this paper have shown that the local market framework for flexibility could have potential for deferring investments in distribution network capacity, minimizing energy costs and improving the hosting capacity of distribution networks.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3460
Author(s):  
Luca Mendicino ◽  
Daniele Menniti ◽  
Anna Pinnarelli ◽  
Nicola Sorrentino ◽  
Pasquale Vizza ◽  
...  

With the introduction of the renewable energy communities in the current electrical market environment, it becomes possible to aggregate small generation resources and users’ loads to exchange power within the aggregation and at the same time provide services to the electrical system. The renewable energy community of users equipped with nanogrid technology allows performing an adequate level of flexibility. It may be the solution to coordinate in the best possible way the energy resources in order to increase the community self-consumption and to provide ancillary services to the grid. In this paper, a model for the interaction between the Distribution System Operator (DSO)—Transmission System Operator (TSO) and the energy community based on nanogrids is proposed and an operational example is presented.


Author(s):  
Beatriz Batista Cardoso ◽  
Sophia Boing Righetto ◽  
Eduardo Luiz Martins ◽  
Marcos Aurelio Izumida Martins ◽  
Andre Luiz Pereira ◽  
...  

2018 ◽  
Vol 210 ◽  
pp. 881-895 ◽  
Author(s):  
Pol Olivella-Rosell ◽  
Eduard Bullich-Massagué ◽  
Mònica Aragüés-Peñalba ◽  
Andreas Sumper ◽  
Stig Ødegaard Ottesen ◽  
...  

2020 ◽  
Author(s):  
hang zhang ◽  
Bo Liu ◽  
Hongyu Wu

This paper presents a false data injection attack against AC state estimation in distribution system. Such attack is called net local load redistribution attacks (NRLA) which is aimed at misleading the distribution system operator to observe illusory under-voltage issues in the AC state estimation. The attack vector is constructed with only local network information.<br>


2020 ◽  
Author(s):  
Lawryn Edmonds ◽  
Bo Liu ◽  
Hongyu Wu ◽  
Hang Zhang ◽  
Don Gruenbacher ◽  
...  

As home energy management systems (HEMSs) are implemented in homes as ways of reducing customer costs and providing demand response (DR) to the electric utility, homeowner’s privacy can be compromised. As part of the HEMS framework, homeowners are required to send load forecasts to the distribution system operator (DSO) for power balancing purposes. Submitting forecasts allows a platform for attackers to gain knowledge on user patterns based on the load information provided. The attacker could, for example, enter the home to steal valuable possessions when the homeowner is away. In this paper, we propose a framework using a smart contract within a private blockchain to keep customer information private when communicating with the DSO. The results show the HEMS users’ privacy is maintained, while the benefits of data sharing are obtained. Blockchain and its associated smart contracts may be a viable solution to security concerns in DR applications where load forecasts are sent to a DSO.


Sign in / Sign up

Export Citation Format

Share Document