Ultra-low-noise transimpedance amplifier for high-performance MEMS resonant gyroscopes

Author(s):  
J.-K. Woo ◽  
C. Boyd ◽  
J. Cho ◽  
K. Najafi
2014 ◽  
Vol 43 (10) ◽  
pp. 1455-1473 ◽  
Author(s):  
Gino Giusi ◽  
Gianluca Cannatà ◽  
Graziella Scandurra ◽  
Carmine Ciofi

2019 ◽  
Vol 15 (2) ◽  
pp. 113-118
Author(s):  
Agata Romanova ◽  
Vaidotas Barzdenas

AbstractThe work reports on the design and performance of a low-noise low-cost CMOS transimpedance amplifier (TIA). The proposed circuit shall be employed in optical time-domain reflectometers and is implemented using an affordable 0.18 µm 1.8 V CMOS process. The approach preserves the benefits of a classical feedback structure while addressing the noise problem of conventional feed-forward and resistive feedback architectures via the usage of noise-efficient capacitive feedback. Circuit-level modifications are proposed to mitigate the voltage headroom and DC current issues. The suggested design achieves a total gain of 82 dBΩ (79 dBΩ after the output buffer) within the bandwidth of 1.2 GHz while operating with a total input capacitance of 0.7 pF. The simulated average input-referred noise current density is below 1.8 pA/sqrt(Hz) with the power consumption of the complete amplifier including the output buffer being 21 mW.


2007 ◽  
Vol 4 (1) ◽  
pp. 69
Author(s):  
F. Touati ◽  
M. Loulou

High gain, wide bandwidth, low noise, and low-power transimpedance amplifiers based on new BiCMOS common- base topologies have been designed for fiber-optic receivers. In particular a design approach, hereafter called "A more- FET approach", added a new dimension to effectively optimize performance tradeoffs inherent in such circuits. Using conventional silicon 0.8 μm process parameters, simulated performance features of a total-FET transimpedance amplifier operating at 7.2 GHz, which is close to the technology fT of 12 GHz, are presented. The results are superior to those of similar recent designs and comparable to IC designs using GaAs technology. A detailed analysis of the design architecture, including a discussion on the effects of moving toward more FET-based designs is presented. 


Author(s):  
Minh Tran ◽  
Duanni Huang ◽  
Tin Komljenovic ◽  
Jonathan Peters ◽  
Aditya Malik ◽  
...  

Integrated ultra-low-loss waveguides are highly desired for integrated photonics to enable applications that require long delay lines, high-Q resonators, narrow filters, etc. Here we present an ultra-low-loss silicon waveguide on 500 nm thick SOI platform. Meter-scale delay lines, million-Q resonators and tens of picometer bandwidth grating filters are experimentally demonstrated. We design a low-loss low-reflection taper to seamlessly integrate the ultra-low-loss waveguide with standard heterogeneous Si/III-V integrated photonics platform to allow realization of high-performance photonic devices such as ultra-low-noise lasers and optical gyroscopes.


Author(s):  
Dong-Sik Kim ◽  
Jong-Pil Kim ◽  
Ju-Young Lee ◽  
Yeon Duk Kang ◽  
Sun-Ju Kim

Sign in / Sign up

Export Citation Format

Share Document