Multi-mass-spring model and energy transmission of one-dimensional periodic structures

Author(s):  
Zhi-Bao Cheng ◽  
Zhi-Fei Shi
2014 ◽  
Vol 81 (12) ◽  
Author(s):  
Ramathasan Thevamaran ◽  
Fernando Fraternali ◽  
Chiara Daraio

We present a one-dimensional, multiscale mass-spring model to describe the response of vertically aligned carbon nanotube (VACNT) foams subjected to uniaxial, high-rate compressive deformations. The model uses mesoscopic dissipative spring elements composed of a lower level chain of asymmetric, bilateral, bistable elastic springs to describe the experimentally observed deformation-dependent stress–strain responses. The model shows an excellent agreement with the experimental response of VACNT foams undergoing finite deformations and enables in situ identification of the constitutive parameters at the smaller lengthscales. We apply the model to two cases of VACNT foams impacted at 1.75 ms−1 and 4.44 ms−1 and describe their dynamic response.


Author(s):  
Z. Y. Gao ◽  
T. X. Yu

On the basis of our previous studies of a typical type II structure (i.e. a pair of prebent plates), a simplified one-dimensional mass-spring model is proposed to describe the uniaxial load-deformation characteristic of cellular materials and structures. When compared with the previous mass-spring model proposed by Shim et al., the present model employs fewer parameters (only two) to describe elastic-plastic behaviour, and the structural hardening/softening is represented by only one of the parameters. The model is then used to study the dynamic response of a cellular chain to a pulse loading of specified force intensity and duration. By adjusting the value of a single parameter adopted in the model, each cell of the cellular chain is identically assigned to possess either an elastic-hardening or an elastic-softening-consolidation property. The effects of material elasticity, cell compliance characteristic, cell number, and pulse intensity and duration are all examined by this model and discussed in detail. A special attention is paid to the initiation and propagation of the plastic collapse of the cells in the cellular chain so as to identify the governing parameters. Apart from the elastic wave speed, two other characteristic velocities, i.e. the particle velocity induced by the elastic wave and the plastic collapse propagation velocity, are defined and analytically evaluated. It is found that these three characteristic velocities completely govern the elastic and plastic dynamic behaviour of the cellular chains.


2021 ◽  
Vol 16 ◽  
pp. 155892502110125
Author(s):  
Sha Sha ◽  
Anqi Geng ◽  
Yuqin Gao ◽  
Bin Li ◽  
Xuewei Jiang ◽  
...  

There are different kinds of geometrical models and physical models used to simulate weft knitted fabrics nowadays, such as loop models based on Pierce, piecewise function, spline curve, mass-spring model, and finite element analyses (FEA). Weft knitting simulation technology, including modeling and yarn reality, has been widely adopted in fabric structure designing for the manufacturer. The technology has great potentials in both industries and dynamic virtual display. The present article is aimed to review the current development of 3-D simulation technique for weft knitted fabrics.


Author(s):  
Salina Sulaiman ◽  
Tan Sing Yee ◽  
Abdullah Bade

Physically based models assimilate organ-specific material properties, thus they are suitable in developing a surgical simulation. This study uses mass spring model (MSM) to represent the human liver because MSM is a discrete model that is potentially more realistic than the finite element model (FEM). For a high-end computer aided medical technology such as the surgical simulator, the most important issues are to fulfil the basic requirement of a surgical simulator. Novice and experienced surgeons use surgical simulator for surgery training and planning. Therefore, surgical simulation must provide a realistic and fast responding virtual environment. This study focuses on fulfilling the time complexity and realistic of the surgical simulator. In order to have a fast responding simulation, the choice of numerical integration method is crucial. This study shows that MATLAB ode45 is the fastest method compared to 2nd ordered Euler, MATLAB ode113, MATLAB ode23s and MATLAB ode23t. However, the major issue is human liver consists of soft tissues. In modelling a soft tissue model, we need to understand the mechanical response of soft tissues to surgical manipulation. Any interaction between haptic device and the liver model may causes large deformation and topology change in the soft tissue model. Thus, this study investigates and presents the effect of varying mass, damping, stiffness coefficient on the nonlinear liver mass spring model. MATLAB performs and shows simulation results for each of the experiment. Additionally, the observed optimal dataset of liver behaviour is applied in SOFA (Simulation Open Framework Architecture) to visualize the major effect.


Sign in / Sign up

Export Citation Format

Share Document