Imaging the Local Nonlinear Viscoelastic Properties of Soft Tissues: Initial Validation and Expected Benefits

Author(s):  
Soumya Goswami ◽  
Rifat Ahmed ◽  
Fan Feng ◽  
Siladitya Khan ◽  
Marvin M. Doyley ◽  
...  
Author(s):  
S. D. Abramowitch ◽  
T. D. Clineff ◽  
R. E. Debski ◽  
S. L.-Y. Woo

The medial collateral ligament (MCL) is one of the most frequently injured ligaments in the knee. Although it can heal spontaneously after rupture, laboratory studies have shown that the mechanical properties of the healing MCL remain inferior to normal for up to two years after injury (1). Additionally, the healing MCL has been shown to display increased amounts of stress relaxation and creep (2). In order to more completely describe the viscoelastic properties of healing ligaments, we propose to use the Quasi-Linear Viscoelastic (QLV) theory formulated by Fung (1972). This theory has been used to successfully describe the viscoelastic properties of many soft-tissues (3). Recently, our research center has developed an improved approach to determine the constants describing the QLV theory based on data collected from a stress relaxation experiment that utilizes a slow strain rate during loading. This approach allows for experimental errors that commonly result from fast strain rates to be avoided (ex. overshoot) (4). Therefore, the objective of this study were to use this new approach to determine the constants describing the quasi-linear viscoelastic behavior of the healing goat MCL at 12 weeks after injury.


Author(s):  
E. M. Timanin ◽  
N. S. Sydneva ◽  
A. A. Zakharova

Introduction. To date there is a lack of studies dedicated to the objectification of the palpation data obtained by a specialist during the osteopathic examination. The issue of the evidence of the results of osteopathic correction still remains important. Search for instrumental methods allowing to register and to measure various palpation phenomena and manifestations of somatic dysfunctions is very relevant for the development of osteopathy as a science. It is also very important to find objective characteristics of these methods.Goal of research — to study viscoelastic characteristics of the soft tissues of the lower legs by palpation and instrumental methods before and after osteopathic correction.Materials and methods. 22 volunteers (12 women and 10 men) aged 18–23 years without complaints of the musculoskeletal system were examined. Osteopathic diagnostics and measurement of the viscoelastic properties of muscles were carried out by the method of vibration viscoelastometry before and after osteopathic correction.Results. Correlation analysis by Spearman showed that the subjective assessment of an osteopath positively correlated with both elasticity (r=0,43, p<0,05) and viscosity of soft issues (r=0,29, p<0,05). For the gastrocnemius muscle, this pattern was even more pronounced — for elasticity r=0,51, p<0,05, for viscosity =0,34, p<0,05. After osteopathic correction no changes in the elasticity of the soft tissues were observed. The viscosity of the tissues reduced, but in the projection of the gastrocnemius muscle, these changes were not statistically significant (p=0,12), whereas in the projection of the soleus muscle statistically significant changes (p=0,034) were observed.Conclusion. Changes in the viscoelastic properties of tissues demonstrated that the effects of osteopathic correction with the use of myofascial mobilization techniques, articulation mobilization techniques, and lymphatic drainage techniques were not obvious. The elasticity of soft tissues of the lower legs did not change, while the viscosity decreased, especially in the projection of the soleus muscles. This effect of the osteopathic correction can be associated with the effect of thixotropy — the transformation of gel-like intercellular substance into sol. Thus, the research showed that vibration viscoelastometry can be used for the objectifi cation of the condition of soft tissues and of the effects of osteopathic correction.


Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 67
Author(s):  
Song Joo Lee ◽  
Yong-Eun Cho ◽  
Kyung-Hyun Kim ◽  
Deukhee Lee

Knowing the material properties of the musculoskeletal soft tissue could be important to develop rehabilitation therapy and surgical procedures. However, there is a lack of devices and information on the viscoelastic properties of soft tissues around the lumbar spine. The goal of this study was to develop a portable quantifying device for providing strain and stress curves of muscles and ligaments around the lumbar spine at various stretching speeds. Each sample was conditioned and applied for 20 repeatable cyclic 5 mm stretch-and-relax trials in the direction and perpendicular direction of the fiber at 2, 3 and 5 mm/s. Our device successfully provided the stress and strain curve of the samples and our results showed that there were significant effects of speed on the young’s modulus of the samples (p < 0.05). Compared to the expensive commercial device, our lower-cost device provided comparable stress and strain curves of the sample. Based on our device and findings, various sizes of samples can be measured and viscoelastic properties of the soft tissues can be obtained. Our portable device and approach can help to investigate young’s modulus of musculoskeletal soft tissues conveniently, and can be a basis for developing a material testing device in a surgical room or various lab environments.


2020 ◽  
Vol 113 ◽  
pp. 110090
Author(s):  
Mohammad R. Islam ◽  
Jitka Virag ◽  
Michelle L. Oyen

Sign in / Sign up

Export Citation Format

Share Document