scholarly journals Do you believe your (social media) data A personal story on location data biases, errors, and plausibility as well as their visualization

Tobias Isenberg ◽  
Zujany Salazar ◽  
Rafael Blanco ◽  
Catherine Plaisant
2019 ◽  
Vol 8 (5) ◽  
pp. 202 ◽  
Wei Jiang ◽  
Yandong Wang ◽  
Mingxuan Dou ◽  
Senbao Liu ◽  
Shiwei Shao ◽  

Competitive location problems (CLPs) are a crucial business concern. Evaluating customers’ sensitivities to different facility attractions (such as distance and business area) is the premise for solving a CLP. Currently, the development of location-based services facilitates the use of location data for sensitivity evaluations. Most studies based on location data assumed the customers’ sensitivities to be global and constant over space. In this paper, we proposed a new method of using social media data to solve competitive location problems based on the evaluation of customers’ local sensitivities. Regular units were first designed to spatially aggregate social media data to extract samples with uniform spatial distribution. Then, geographically weighted regression (GWR) and the Huff model were combined to evaluate local sensitivities. By applying the evaluation results, the captures for different feasible locations were calculated, and the optimal location for a new retail facility could be determined. In our study, the five largest retail agglomerations in Beijing were taken as test cases, and a possible new retail agglomeration was located. The results of our study can help people have a better understanding of the spatial variation of customers’ local sensitivities. In addition, our results indicate that our method can solve competitive location problems in a cost-effective way.

2020 ◽  
Vol 114 (4) ◽  
pp. 1343-1351

Larger protests are more likely to lead to policy changes than small ones are, but whether or not attendance estimates provided in news or generated from social media are biased is an open question. This letter closes the question: news and geolocated social media data generate accurate estimates of protest size variation. This claim is substantiated using cellphone location data from more than 10 million individuals during the 2017 United States Women’s March protests. These cellphone estimates correlate strongly with those provided in news media as well as three size estimates generated using geolocated tweets, one text-based and two based on images. Inferences about protest attendance from these estimates match others’ findings about the Women’s March.

2014 ◽  
Kathleen M. Carley ◽  
L. R. Carley ◽  
Jonathan Storrick

2018 ◽  
Anika Oellrich ◽  
George Gkotsis ◽  
Richard James Butler Dobson ◽  
Tim JP Hubbard ◽  
Rina Dutta

BACKGROUND Dementia is a growing public health concern with approximately 50 million people affected worldwide in 2017 and this number is expected to reach more than 131 million by 2050. The toll on caregivers and relatives cannot be underestimated as dementia changes family relationships, leaves people socially isolated, and affects the finances of all those involved. OBJECTIVE The aim of this study was to explore using automated analysis (i) the age and gender of people who post to the social media forum Reddit about dementia diagnoses, (ii) the affected person and their diagnosis, (iii) relevant subreddits authors are posting to, (iv) the types of messages posted and (v) the content of these posts. METHODS We analysed Reddit posts concerning dementia diagnoses. We used a previously developed text analysis pipeline to determine attributes of the posts as well as their authors to characterise online communications about dementia diagnoses. The posts were also examined by manual curation for the diagnosis provided and the person affected. Furthermore, we investigated the communities these people engage in and assessed the contents of the posts with an automated topic gathering technique. RESULTS Our results indicate that the majority of posters in our data set are women, and it is mostly close relatives such as parents and grandparents that are mentioned. Both the communities frequented and topics gathered reflect not only the sufferer's diagnosis but also potential outcomes, e.g. hardships experienced by the caregiver. The trends observed from this dataset are consistent with findings based on qualitative review, validating the robustness of social media automated text processing. CONCLUSIONS This work demonstrates the value of social media data sources as a resource for in-depth studies of those affected by a dementia diagnosis and the potential to develop novel support systems based on their real time processing in line with the increasing digitalisation of medical care.

Philip Habel ◽  
Yannis Theocharis

In the last decade, big data, and social media in particular, have seen increased popularity among citizens, organizations, politicians, and other elites—which in turn has created new and promising avenues for scholars studying long-standing questions of communication flows and influence. Studies of social media play a prominent role in our evolving understanding of the supply and demand sides of the political process, including the novel strategies adopted by elites to persuade and mobilize publics, as well as the ways in which citizens react, interact with elites and others, and utilize platforms to persuade audiences. While recognizing some challenges, this chapter speaks to the myriad of opportunities that social media data afford for evaluating questions of mobilization and persuasion, ultimately bringing us closer to a more complete understanding Lasswell’s (1948) famous maxim: “who, says what, in which channel, to whom, [and] with what effect.”

Sign in / Sign up

Export Citation Format

Share Document