A Novel Artificial Jellyfish Search Algorithm Improved with Detailed Local Search Strategy

Author(s):  
Gulnur Yildizdan ◽  
Omer Kaan Baykan
2021 ◽  
Vol 11 (11) ◽  
pp. 4837
Author(s):  
Mohamed Abdel-Basset ◽  
Reda Mohamed ◽  
Mohamed Abouhawwash ◽  
Victor Chang ◽  
S. S. Askar

This paper studies the generalized normal distribution algorithm (GNDO) performance for tackling the permutation flow shop scheduling problem (PFSSP). Because PFSSP is a discrete problem and GNDO generates continuous values, the largest ranked value rule is used to convert those continuous values into discrete ones to make GNDO applicable for solving this discrete problem. Additionally, the discrete GNDO is effectively integrated with a local search strategy to improve the quality of the best-so-far solution in an abbreviated version of HGNDO. More than that, a new improvement using the swap mutation operator applied on the best-so-far solution to avoid being stuck into local optima by accelerating the convergence speed is effectively applied to HGNDO to propose a new version, namely a hybrid-improved GNDO (HIGNDO). Last but not least, the local search strategy is improved using the scramble mutation operator to utilize each trial as ideally as possible for reaching better outcomes. This improved local search strategy is integrated with IGNDO to produce a new strong algorithm abbreviated as IHGNDO. Those proposed algorithms are extensively compared with a number of well-established optimization algorithms using various statistical analyses to estimate the optimal makespan for 41 well-known instances in a reasonable time. The findings show the benefits and speedup of both IHGNDO and HIGNDO over all the compared algorithms, in addition to HGNDO.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2274 ◽  
Author(s):  
Jianzhong Xu ◽  
Fu Yan ◽  
Kumchol Yun ◽  
Lifei Su ◽  
Fengshu Li ◽  
...  

The economic load dispatch (ELD) problem is a complex optimization problem in power systems. The main task for this optimization problem is to minimize the total fuel cost of generators while also meeting the conditional constraints of valve-point loading effects, prohibited operating zones, and nonsmooth cost functions. In this paper, a novel grey wolf optimization (GWO), abbreviated as NGWO, is proposed to solve the ELD problem by introducing an independent local search strategy and a noninferior solution neighborhood independent local search technique to the original GWO algorithm to achieve the best problem solution. A local search strategy is added to the standard GWO algorithm in the NGWO, which is called GWOI, to search the local neighborhood of the global optimal point in depth and to guarantee a better candidate. In addition, a noninferior solution neighborhood independent local search method is introduced into the GWOI algorithm to find a better solution in the noninferior solution neighborhood and ensure the high probability of jumping out of the local optimum. The feasibility of the proposed NGWO method is verified on five different power systems, and it is compared with other selected methods in terms of the solution quality, convergence rate, and robustness. The compared experimental results indicate that the proposed NGWO method can efficiently solve ELD problems with higher-quality solutions.


2014 ◽  
Vol 8 (2) ◽  
pp. 203-216 ◽  
Author(s):  
Wenzhong Guo ◽  
Genggeng Liu ◽  
Guolong Chen ◽  
Shaojun Peng

2010 ◽  
Vol 20-23 ◽  
pp. 64-69 ◽  
Author(s):  
Yong Quan Zhou ◽  
Lingzi Liu

In this paper, a novel chaotic cultural-based particle swarm optimization algorithm (CCPSO) is proposed for constrained optimization problems by employing cultural-based particle swarm optimization (CPSO) algorithm and the notion of chaotic local search strategy. In the CCPSO, the shortcoming of cultural-based particle swarm optimization (CPSO) that it is easy to trap into local minimum be overcome, the chaotic local search strategy is introduced in the influence functions of cultural algorithm. Simulation results based on well-known constrained engineering design problems demonstrate the effectiveness, efficiency and robustness on initial populations of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document