18 F‐FET PET maximum standard uptake value and WHO tumour classification grade in glioma

Author(s):  
Annaleis Tatkovic ◽  
Rhiannon McBean ◽  
Ebony Perkins ◽  
David Wong
2003 ◽  
Vol 42 (03) ◽  
pp. 90-93 ◽  
Author(s):  
N. Döbert ◽  
O. Rieker ◽  
W. Kneist ◽  
St. Mose ◽  
A. Teising ◽  
...  

SummaryAim: Evaluation of the influence of histopathologic sub-types and grading of primaries of oesophageal cancer, relative to their size and location, on the uptake of 18F-deoxyglucose (FDG) as measured by positron emission tomography (PET). Methods: 50 consecutive patients were evaluated. There were four drop-outs due to previous surgical and/or chemotherapeutical treatments and thus in 46 patients (28 squamous cell carcinomas and 18 adenocarcinomas) a pretherapeutic PET evalution of the primary including a standard uptake value (SUV) was obtained. In 42 cases data on tumour grading were available also. Results: Squamous cell carcinomas (SCC) were in 7/13/8 cases located in the proximal, medial and distal part of the oesophagus, respectively the grading was Gx in 3, G 2 in 12, G2-3 in 7, and G3 in 6 cases. The SUVmax showed a mean of 6.5 ± 2.8 (range 1.7-13.5). Adenocarcinomas (ACA) were located in the medial oesophagus in two cases and otherwise in its distal parts. Grading was Gx in one, G2 in 4, G2-3 in 3, G3 in 3, G3-4 in 3, and G4 in one case. The mean SUVmax was 5.2 ± 3.2 (range 1-13.6) and this was not significantly different from the SCC. Concerning the tumour grading there was a slight, statistically not relevant trend towards higher SUVmax in more dedifferentiated cancer. Discussion: SCC and ACA of the oesophagus show no relevant differences in the FDG-uptake. While there was a significant variability of tumour uptake in the overall study group, a correlation of SUV and tumour grading was not found.


2019 ◽  
Vol 12 (3) ◽  
pp. 220-228 ◽  
Author(s):  
Laura Evangelista ◽  
Lea Cuppari ◽  
Luisa Bellu ◽  
Daniele Bertin ◽  
Mario Caccese ◽  
...  

Purpose: The aims of the present study were to: 1- critically assess the utility of L-3,4- dihydroxy-6-18Ffluoro-phenyl-alanine (18F-DOPA) and O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) Positron Emission Tomography (PET)/Computed Tomography (CT) in patients with high grade glioma (HGG) and 2- describe the results of 18F-DOPA and 18F-FET PET/CT in a case series of patients with recurrent HGG. Methods: We searched for studies using the following databases: PubMed, Web of Science and Scopus. The search terms were: glioma OR brain neoplasm and DOPA OR DOPA PET OR DOPA PET/CT and FET OR FET PET OR FET PET/CT. From a mono-institutional database, we retrospectively analyzed the 18F-DOPA and 18F-FET PET/CT of 29 patients (age: 56 ± 12 years) with suspicious for recurrent HGG. All patients underwent 18F-DOPA or 18F-FET PET/CT for a multidisciplinary decision. The final definition of recurrence was made by magnetic resonance imaging (MRI) and/or multidisciplinary decision, mainly based on the clinical data. Results: Fifty-one articles were found, of which 49 were discarded, therefore 2 studies were finally selected. In both the studies, 18F-DOPA and 18F-FET as exchangeable in clinical practice particularly for HGG patients. From our institutional experience, in 29 patients, we found that sensitivity, specificity and accuracy of 18F-DOPA PET/CT in HGG were 100% (95% confidence interval- 95%CI - 81-100%), 63% (95%CI: 39-82%) and 62% (95%CI: 39-81%), respectively. 18F-FET PET/CT was true positive in 4 and true negative in 4 patients. Sensitivity, specificity and accuracy for 18F-FET PET/CT in HGG were 100%. Conclusion: 18F-DOPA and 18F-FET PET/CT have a similar diagnostic accuracy in patients with recurrent HGG. However, 18F-DOPA PET/CT could be affected by inflammation conditions (false positive) that can alter the final results. Large comparative trials are warranted in order to better understand the utility of 18F-DOPA or 18F-FET PET/CT in patients with HGG.


Author(s):  
K. J. Paprottka ◽  
S. Kleiner ◽  
C. Preibisch ◽  
F. Kofler ◽  
F. Schmidt-Graf ◽  
...  

Abstract Purpose To evaluate diagnostic accuracy of fully automated analysis of multimodal imaging data using [18F]-FET-PET and MRI (including amide proton transfer-weighted (APTw) imaging and dynamic-susceptibility-contrast (DSC) perfusion) in differentiation of tumor progression from treatment-related changes in patients with glioma. Material and methods At suspected tumor progression, MRI and [18F]-FET-PET data as part of a retrospective analysis of an observational cohort of 66 patients/74 scans (51 glioblastoma and 23 lower-grade-glioma, 8 patients included at two different time points) were automatically segmented into necrosis, FLAIR-hyperintense, and contrast-enhancing areas using an ensemble of deep learning algorithms. In parallel, previous MR exam was processed in a similar way to subtract preexisting tumor areas and focus on progressive tumor only. Within these progressive areas, intensity statistics were automatically extracted from [18F]-FET-PET, APTw, and DSC-derived cerebral-blood-volume (CBV) maps and used to train a Random Forest classifier with threefold cross-validation. To evaluate contribution of the imaging modalities to the classifier’s performance, impurity-based importance measures were collected. Classifier performance was compared with radiology reports and interdisciplinary tumor board assessments. Results In 57/74 cases (77%), tumor progression was confirmed histopathologically (39 cases) or via follow-up imaging (18 cases), while remaining 17 cases were diagnosed as treatment-related changes. The classification accuracy of the Random Forest classifier was 0.86, 95% CI 0.77–0.93 (sensitivity 0.91, 95% CI 0.81–0.97; specificity 0.71, 95% CI 0.44–0.9), significantly above the no-information rate of 0.77 (p = 0.03), and higher compared to an accuracy of 0.82 for MRI (95% CI 0.72–0.9), 0.81 for [18F]-FET-PET (95% CI 0.7–0.89), and 0.81 for expert consensus (95% CI 0.7–0.89), although these differences were not statistically significant (p > 0.1 for all comparisons, McNemar test). [18F]-FET-PET hot-spot volume was single-most important variable, with relevant contribution from all imaging modalities. Conclusion Automated, joint image analysis of [18F]-FET-PET and advanced MR imaging techniques APTw and DSC perfusion is a promising tool for objective response assessment in gliomas.


2021 ◽  
Author(s):  
Arnab K. Mishra ◽  
Pinki Roy ◽  
Sivaji Bandyopadhyay ◽  
Sujit K. Das

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A Bakula ◽  
D Patriki ◽  
E Von Felten ◽  
G Benetos ◽  
A Sustar ◽  
...  

Abstract Background Positron emission tomography myocardial perfusion imaging (PET MPI) is a robust and excellent tool for assessing ischemia. So far, however, no methodology has been established to distinguish truly reduced MFR due to microvascular dysfunction or three-vessel coronary disease (CAD) from seemingly impaired MFR due to inadequate adenosine response. Conversely, for cardiac stress magnetic resonance (CMR) the adenosine induced splenic switch-off (SSO) sign has been proposed as a potential marker for adequate adenosine response. Purpose We assessed the feasibility of detecting SSO in adenosine stress 13N-ammonia PET MPI using SSO in CMR as the standard of reference. Methods 50 patients underwent simultaneous PET MPI and CMR on a hybrid PET/MR device with co-injection of 13N-ammonia and a gadolinium-based contrast agent during rest and adenosine-induced stress. In CMR, SSO was assessed qualitatively and quantitatively by calculating the ratio of the peak signal intensity of the spleen during stress over rest (SIR). Similarly, in PET MPI the splenic signal activity ratio (SAR) was calculated as the proportion of the maximal standard uptake value of the spleen in stress and rest. Additionally, MFR was quantified in PET MPI. Results Visual SSO in CMR was present in 37 (74%) patients, whereas 13 patients had no SSO. The median SIR in CMR was significantly lower in patients with visual SSO compared to patients without visual SSO (0.57 [IQR 0.49–0.62] vs. 0.89 [IQR 0.76–0.98]; p<0.001). Similarly, median SAR in PET was significantly lower in patients with visual SSO in CMR compared to patients without visual SSO (0.4 [IQR 0.32–0.45] vs. 0.8 [IQR 0.47–0.98]; p<0.001). SIR correlated significantly with SAR (r=0.4, p<0.05). Mean MFR was significantly higher in patients with visual SSO compared to patients without visual SSO (3.38±0.86 vs. 2.53±0.84; p<0.05). Conclusion Similarly to CMR, SSO can be detected in 13N-ammonia PET MPI. This might help distinguish adenosine non-responders from patients with truly impaired MFR due to microvascular dysfunction or multivessel CAD. Figure 1. Splenic switch off (*) illustrated on transaxial 13N-ammonia PET MPI stress (A) compared to rest perfusion images (B) and similarly in stress (C) and rest (D) short axis CMR (**) in the same patient during adenosine induced stress and co-injection of 13N-ammonia and a gadolinium based contrast agent, acquired on a hybrid PET/MR device. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Swiss National Science Foundation (SNSF)


2021 ◽  
Author(s):  
Frederik Grosse ◽  
Florian Wedel ◽  
Ulrich-Wilhelm Thomale ◽  
Ingo Steffen ◽  
Arend Koch ◽  
...  

Abstract Background MRI has shortcomings in differentiation between tumor tissue and post-therapeutic changes in pretreated brain tumor patients. Patients We assessed 22 static FET-PET/CT-scans of 17 pediatric patients (median age 12 years, range 2–16 years, ependymoma n=4, medulloblastoma n=4, low-grade glioma n=6, high-grade glioma n=3, germ cell tumor n=1, choroid plexus tumor n=1, median follow-up: 112 months) with multimodal treatment. Method FET-PET/CT-scans were analyzed visually by 3 independent nuclear medicine physicians. Additionally quantitative FET-Uptake for each lesion was determined by calculating standardized uptake values (SUVmaxT/SUVmeanB, SUVmeanT/SUVmeanB). Histology or clinical follow-up served as reference. Results Static FET-PET/CT reliably distinguished between tumor tissue and post-therapeutic changes in 16 out of 17 patients. It identified correctly vital tumor tissue in 13 patients and post-therapeutic changes in 3 patients. SUV-based analyses were less sensitive than visual analyses. Except from a choroid plexus carcinoma, all tumor entities showed increased FET-uptake. Discussion Our study comprises a limited number of patients but results corroborate the ability of FET to detect different brain tumor entities in pediatric patients and discriminate between residual/recurrent tumor and post-therapeutic changes. Conclusions We observed a clear benefit from additional static FET-PET/CT-scans when conventional MRI identified equivocal lesions in pretreated pediatric brain tumor patients. These results warrant prospective studies that should include dynamic scans.


Sign in / Sign up

Export Citation Format

Share Document