scholarly journals Circulating β cell‐specific CD8 + T cells restricted by high‐risk HLA class I molecules show antigen experience in children with and at risk of type 1 diabetes

2019 ◽  
Vol 199 (3) ◽  
pp. 263-277 ◽  
Author(s):  
L. Yeo ◽  
I. Pujol‐Autonell ◽  
R. Baptista ◽  
M. Eichmann ◽  
D. Kronenberg‐Versteeg ◽  
...  
2012 ◽  
Vol 209 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Ken T. Coppieters ◽  
Francesco Dotta ◽  
Natalie Amirian ◽  
Peter D. Campbell ◽  
Thomas W.H. Kay ◽  
...  

A direct association of islet-autoreactive T cells with β cell destruction in human pancreatic islets from type 1 diabetes (T1D) patients has never been demonstrated, and little is known about disease progression after diagnosis. Frozen pancreas samples were obtained from 45 cadaveric T1D donors with disease durations ranging from 1 wk to >50 yr, 14 nondiabetic controls, 5 nondiabetics with islet autoantibodies, 2 cases of gestational diabetes, and 6 T2D patients. Sections were systematically analyzed for the presence of insulin-sufficient β cells, CD8+ insulitic lesions, and HLA class I hyperexpression. Finally, consecutive sections from HLA-A2–expressing individuals were probed for CD8 T cell reactivity against six defined islet autoantigens associated with T1D by in situ tetramer staining. Both single and multiple CD8 T cell autoreactivities were detected within individual islets in a subset of patients up to 8 yr after clinical diagnosis. Pathological features such as HLA class I hyperexpression and insulitis were specific for T1D and persisted in a small portion of the patients with longstanding disease. Insulitic lesions consistently presented in a multifocal pattern with varying degrees of infiltration and β cell loss across affected organs. Our observations provide the first direct proof for islet autoreactivity within human islets and underscore the heterogeneous and chronic disease course.


2004 ◽  
Vol 41 (10) ◽  
pp. 1047-1050 ◽  
Author(s):  
Ana Paula M Fernandes ◽  
Milton C Foss ◽  
Silvia B.V Ramos ◽  
Eduardo A Donadi

2010 ◽  
Vol 135 ◽  
pp. S21
Author(s):  
Anna Skowera ◽  
Sefina Arif ◽  
Anna Zaremba ◽  
Colin Dayan ◽  
Bart Roep ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Michele Mishto ◽  
Artem Mansurkhodzhaev ◽  
Teresa Rodriguez-Calvo ◽  
Juliane Liepe

Increasing evidence suggests that post-translational peptide splicing can play a role in the immune response under pathological conditions. This seems to be particularly relevant in Type 1 Diabetes (T1D) since post-translationally spliced epitopes derived from T1D-associated antigens have been identified among those peptides bound to Human Leucocyte Antigen (HLA) class I and II complexes. Their immunogenicity has been confirmed through CD4+ and CD8+ T cell-mediated responses in T1D patients. Spliced peptides theoretically have a large sequence variability. This might increase the frequency of viral-human zwitter peptides, i.e. peptides that share a complete sequence homology irrespective of whether they originate from human or viral antigens, thereby impinging upon the discrimination between self and non-self antigens by T cells. This might increase the risk of autoimmune responses triggered by viral infections. Since enteroviruses and other viral infections have historically been associated with T1D, we investigated whether cis-spliced peptides derived from selected viruses might be able to trigger CD8+ T cell-mediated autoimmunity. We computed in silico viral-human non-spliced and cis-spliced zwitter epitope candidates, and prioritized peptide candidates based on: (i) their binding affinity to HLA class I complexes, (ii) human pancreatic β cell and medullary thymic epithelial cell (mTEC) antigens’ mRNA expression, (iii) antigen association with T1D, and (iv) potential hotspot regions in those antigens. Neglecting potential T cell receptor (TCR) degeneracy, no viral-human zwitter non-spliced peptide was found to be an optimal candidate to trigger a virus-induced CD8+ T cell response against human pancreatic β cells. Conversely, we identified some zwitter peptide candidates, which may be produced by proteasome-catalyzed peptide splicing, and might increase the likelihood of pancreatic β cells recognition by virus-specific CD8+ T cell clones, therefore promoting β cell destruction in the context of viral infections.


2008 ◽  
Vol 14 (11) ◽  
pp. 1227-1235 ◽  
Author(s):  
Manuel A Friese ◽  
Karen B Jakobsen ◽  
Lone Friis ◽  
Ruth Etzensperger ◽  
Matthew J Craner ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4967-4967
Author(s):  
Junji Tanaka ◽  
Noriaki Iwao ◽  
Tomomi Toubai ◽  
Yoko Miura ◽  
Naoko Kato ◽  
...  

Abstract Leukemic cells and tumor cells can be escaped from allogeneic recognition by usual cytotoxic T cells because of the low expression level of HLA class I molecules. It has recently been shown that inhibitory natural killer cell receptors (NKRs) on not only NK cells but also on T cells negatively regulate NK cell and T cell functions through their binding to MHC class I molecules. The C-type lectin superfamily inhibitory NKR (CD94/NKG2A) heterodimer recognizes an HLA-E that preferably bound to a peptide derived from the signal sequences of most HLA class I. Therefore, CD94 can monitor the global status of HLA class I on the tumor and leukemic cells and induce cytolytic attack without inhibitory signal against HLA class I decreased target cells. In this study, we expanded CD94-expressing T cells from four different sources of blood mononuclear cells (BMCs) and then investigated their cytolytic characteristics against patients’ primary leukemic cells in order to develop a potential strategy of cell therapy for hematological malignancy. We could get more than 100 fold expansion of CD94-expressing CD8 T cells from normal donor PBMC, apheresed PBMC without G-CSF mobilization from normal donor, apheresed PBMC with G-CSF mobilization from patients after chemotherapy and cord blood after 7 days culture with immobilized anti-CD3 monoclonal antibody (1μg/mL) and IL-15 (5 ng/mL). Cytolytic activities of purified CD94-expressing cells using magnetic cell sorting (MACS) (CD94 > 90%) detected by 4 hours 51 Cr release assay against HLA class I intermediate primary leukemic cells (AML M0, M2, M4, CML CP, BC, MDS overt) (50 < mean fluorescence intensity (MFI) < 150) were 35.6 ± 12.8 % (n=21). However, CTL activities against HLA class I high primary leukemic cells (ATL, ALL, LBL)(MFI>150) were lower than 10 % (6.5 ± 4.2, n=5). Also, CTL activities against HLA class I very high PHA autoblasts and alloblasts (MFI>200) were lower than 5 % (4.0 ± 3.6, n=11). Although the cytolytic activity of CD94-expressing cells roughly depends on the expression of HLA class I molecules in inverse proportion, adhesion molecules and also activating molecules such as NKG2D on effector cells might be important for the regulation of the killing activity. In fact, anti-NKG2D mAb (50 μg/mL) suppressed the cytolytic activity of CD94-expressing cells against patients’ primary leukemic cells (% reduction of cytolytic activity, 22.5± 5.9, n=13). Furthermore, anti-LFA-1 mAb (20 μg/mL) suppressed the cytolytic activity of CD94-expressing cells much more effectively than did anti-NKG2D mAb(% reduction of cytolytic activity, 74.2±15.5, n=13, p<0.01). Our data indicated that the cytolytic activity of inhibitory NKR-expressing cells depends at least partially on NKG2D-activating NKR and also required adhesion through LFA-1. In this study, we were able to expand CD94-expressing CD8 T cells which have both inhibitory receptors (NKG2A) and stimulatoy receptors (NKG2D) as well as LFA-1 and ICAM-1 from four different sources of BMCs. Therefore, it may be possible to expand CD94-expressing cells from various sources of BMCs with cytolytic activity against both autologous and allogeneic primary leukemic cells for a new strategy of cell therapy.


2006 ◽  
Vol 119 ◽  
pp. S164
Author(s):  
Qin Ouyang ◽  
Constadina Panagiotopoulos ◽  
Rusung Tan
Keyword(s):  
Class I ◽  

2020 ◽  
Author(s):  
Ada Admin ◽  
Marie Eliane Azoury ◽  
Mahmoud Tarayrah ◽  
Georgia Afonso ◽  
Aurore Pais ◽  
...  

The antigenic peptides processed by β cells and presented through surface HLA Class I molecules are poorly characterized. Each HLA variant, e.g. the most common HLA-A2 and HLA-A3, carries some peptide-binding specificity. Hence, features that, despite these specificities, remain shared across variants may reveal factors favoring β-cell immunogenicity. Building on our previous description of the HLA-A2/A3 peptidome of β cells, we analyzed the HLA-A3-restricted peptides targeted by circulating CD8<sup>+</sup> T cells. Several peptides were recognized by CD8<sup>+</sup> T cells within a narrow frequency (1-50/10<sup>6</sup>), which was similar in donors with and without type 1 diabetes and harbored variable effector/memory fractions. These epitopes could be classified as conventional peptides or neo-epitopes, generated either via peptide <i>cis</i>-splicing or mRNA splicing, e.g. secretogranin-5 (SCG5)-009. As reported for HLA-A2-restricted peptides, several epitopes originated from β-cell granule proteins, e.g. SCG3, SCG5 and urocortin-3. Similarly, H-2K<sup>d</sup>-restricted CD8<sup>+</sup> T cells recognizing the murine orthologues of SCG5, urocortin-3, and proconvertase-2 infiltrated the islets of NOD mice and transferred diabetes into NOD/<i>scid</i> recipients. The finding of granule proteins targeted in both humans and NOD mice supports their disease relevance and identifies the insulin granule as a rich source of epitopes, possibly reflecting its impaired processing in type 1 diabetes.


Sign in / Sign up

Export Citation Format

Share Document