Soil bacterial and fungal communities are linked with plant functional types and soil properties under different grazing intensities

Author(s):  
Zhen Wang ◽  
Yong Ding ◽  
Ke Jin ◽  
Paul C. Struik ◽  
Shixian Sun ◽  
...  
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6462 ◽  
Author(s):  
Xixi Yao ◽  
Jianping Wu ◽  
Xuyin Gong ◽  
Xia Lang ◽  
Cailian Wang

BackgroundGrazing is widely regarded as a critical factor affecting the vegetation structure, productivity and nutritional value of natural grasslands. To protect and restore degraded grasslands, non-grazed exclosures are considered as a valuable tool. However, it is not clear whether long term non-grazed exclosures of grazers can improve the condition and nutritional value of vegetation and soil properties.MethodsWe have compared the impact of long-term non-grazed and continuous grazed management strategy on vegetation structure, nutritional values and soil properties of alpine meadow of the Qinghai-Tibet Plateau by field investigation (11–13 years) and indoor analysis during 2015–2017.ResultsOur results showed that long-term non-grazed exclosures clearly increased the aboveground biomass and coverage of plant functional types. Long-term non-grazed exclosures improved the development of all vegetation types, except NG (GG, grass species type; SG, sedge species type; LG, leguminous species type; FG, forbs species type and NG, noxious species type). Long-term non-grazed exclosures significantly improved all six measured soil properties (TN, total nitrogen; TP, total phosphorus; TK, total potassium; AN, available nitrogen; AP, available phosphorus and AK, available potassium) in 0–10 cm soil layer, considerable effect on the improvement of all measured soil properties, except TK in 10–20 cm soil layer and all measured soil properties, except TN and TK in 20–30 cm soil layer were observed. However, long-term non-grazed exclosures significantly decreased biodiversity indicators i.e., species richness, Shannon diversity index and Evenness index of vegetation. A substantial decrease in the density, biodiversity and nutritional values (CP (crude protein), IVTD (in vitroture digestibility) and NDF (neutral detergent fiber)) of all vegetation types, except NG were recorded. While a downward trend in aboveground biomass and all measured soil properties except TP and TK were observed during 2015–2017 in alpine meadows due to long-term grazed treatment. The density, diversity and nutritional value (CP and IVTD) of long-term non-grazed alpine meadows showed a downward trend over time (2015–2017). By considering the biodiversity conservation and grassland livestock production, long-term non-grazed exclosures are not beneficial for the improvement of density, biodiversity and nutritional values of plant functional types. Thus, our study suggests that rotational non-grazed and grazed treatment would be a good management strategy to restore and improve the biodiversity and nutritional values of plant functional types in natural grassland ecosystems.


2017 ◽  
Vol 81 ◽  
pp. 83-93 ◽  
Author(s):  
Antje Ehrle ◽  
Alan N. Andersen ◽  
Shaun R. Levick ◽  
Jens Schumacher ◽  
Susan E. Trumbore ◽  
...  

2020 ◽  
Author(s):  
Utescher, Torsten ◽  
Erdei, Boglarka ◽  
Francois, Louis ◽  
Henrot, Alexandra-Jane ◽  
Mosbrugger, Volker ◽  
...  

2019 ◽  
Vol 79 (2) ◽  
pp. 159 ◽  
Author(s):  
Jessica G. Swindon ◽  
William K. Lauenroth ◽  
Daniel R. Schlaepfer ◽  
Ingrid C. Burke

2021 ◽  
Vol 496 ◽  
pp. 119398
Author(s):  
Ernest D. Osburn ◽  
Chelcy F. Miniat ◽  
Katherine J. Elliott ◽  
J.E. Barrett

Sign in / Sign up

Export Citation Format

Share Document