scholarly journals Transcription termination and processing of transcripts from tRNA-related Xenopus satellite DNA sequences

1987 ◽  
Vol 164 (2) ◽  
pp. 287-293 ◽  
Author(s):  
Wolfgang MEYERHOF ◽  
Burghardt WITTIG ◽  
Beatrix TAPPESER ◽  
Walter KNOCHEL
1996 ◽  
Vol 109 (9) ◽  
pp. 2199-2206
Author(s):  
A.R. Mitchell ◽  
P. Jeppesen ◽  
L. Nicol ◽  
H. Morrison ◽  
D. Kipling

Chromosome 1 of the inbred mouse strain DBA/2 has a polymorphism associated with the minor satellite DNA at its centromere. The more terminal block of satellite DNA sequences on this chromosome acts as the centromere as shown by the binding of CREST ACA serum, anti-CENP-B and anti-CENP-E polyclonal sera. Demethylation of the minor satellite DNA sequences accomplished by growing cells in the presence of the drug 5-aza-2′-deoxycytidine results in a redistribution of the CENP-B protein. This protein now binds to an enlarged area on the more terminal block and in addition it now binds to the more internal block of minor satellite DNA sequences on chromosome 1. The binding of the CENP-E protein does not appear to be affected by demethylation of the minor satellite sequences. We present a model to explain these observations. This model may also indicate the mechanism by which the CENP-B protein recognises specific sites within the arrays of minor satellite DNA on mouse chromosomes.


1996 ◽  
Vol 109 (9) ◽  
pp. 2221-2228 ◽  
Author(s):  
L. Nicol ◽  
P. Jeppesen

We have analyzed the organization of the homogeneously staining regions (HSRs) in chromosomes from a methotrexate-resistant mouse melanoma cell line. Fluorescence in situ hybridization techniques were used to localize satellite DNA sequences and the amplified copies of the dihydrofolate reductase (DHFR) gene that confer drug-resistance, in combination with immunofluorescence using antibody probes to differentiate chromatin structure. We show that the major DNA species contained in the HSRs is mouse major satellite, confirming previous reports, and that this is interspersed with DHFR DNA in an alternating tandem array that can be resolved at the cytological level. Mouse minor satellite DNA, which is normally located at centromeres, is also distributed along the HSRs, but does not appear to interfere with centromere function. The blocks of major satellite DNA are coincident with chromatin domains that are labelled by an autoantibody that recognizes a mammalian homologue of Drosophila heterochromatin-associated protein 1, shown previously to be confined to centric heterochromatin in mouse. An antiserum that specifically recognizes acetylated histone H4, a marker for active chromatin, fails to bind to the satellite DNA domains, but labels the intervening segments containing DHFR DNA. We can find no evidence for the spreading of the inactive chromatin domains into adjacent active chromatin, even after extended passaging of cells in the absence of methotrexate selection.


1975 ◽  
Vol 96 (4) ◽  
pp. 665-692 ◽  
Author(s):  
Sharyn A. Endow ◽  
Mary Lake Polan ◽  
Joseph G. Gall

Chromosoma ◽  
2004 ◽  
Vol 112 (7) ◽  
pp. 372-373 ◽  
Author(s):  
Kazuhiko Yamada ◽  
Chizuko Nishida-Umehara ◽  
Yoichi Matsuda

Genome ◽  
1996 ◽  
Vol 39 (2) ◽  
pp. 243-248 ◽  
Author(s):  
Thomas Schmidt ◽  
Jörg Kudla

Monomers of a major family of tandemly repeated DNA sequences of Antirrhinum majus have been cloned and characterized. The repeats are 163–167 bp long, contain on average 60% A + T residues, and are organized in head-to-tail orientation. According to site-specific methylation differences two subsets of repeating units can be distinguished. Fluorescent in situ hybridization revealed that the repeats are localized at centromeric regions of six of the eight chromosome pairs of A. majus with substantial differences in array size. The monomeric unit shows no homologies to other plant satellite DNAs. The repeat exists in a similar copy number and conserved size in the genomes of six European species of the genus Antirrhinum. Tandemly repeated DNA sequences with homology to the cloned monomer were also found in the North American section Saerorhinum, indicating that this satellite DNA might be of ancient origin and was probably already present in the ancestral genome of both sections. Key words : Antirrhinum majus, satellite DNA, repetitive DNA, methylation, in situ hybridization.


2015 ◽  
Vol 146 (2) ◽  
pp. 153-170 ◽  
Author(s):  
Manuel A. Garrido-Ramos

For decades, satellite DNAs have been the hidden part of genomes. Initially considered as junk DNA, there is currently an increasing appreciation of the functional significance of satellite DNA repeats and of their sequences. Satellite DNA families accumulate in the heterochromatin in different parts of the eukaryotic chromosomes, mainly in pericentromeric and subtelomeric regions, but they also span the functional centromere. Tandem repeat sequences may spread from subtelomeric to interstitial loci, leading to the formation of chromosome-specific loci or to the accumulation in equilocal sites in different chromosomes. They also appear as the main components of the heterochromatin in the sex-specific region of sex chromosomes. Satellite DNA, required for chromosome organization, also plays a role in pairing and segregation. Some satellite repeats are transcribed and can participate in the formation and maintenance of heterochromatin structure and in the modulation of gene expression. In addition to the identification of the different satellite DNA families, their characteristics and location, we are interested in determining their impact on the genomes, by identifying the mechanisms leading to their appearance and amplification as well as in understanding how they change over time, the factors affecting these changes, and the influence exerted by the evolutionary history of the organisms. On the other hand, satellite DNA sequences are rapidly evolving sequences that may cause reproductive barriers between organisms and promote speciation. The accumulation of experimental data collected in recent years and the emergence of new approaches based on next-generation sequencing and high-throughput genome analysis are opening new perspectives that are changing our understanding of satellite DNA. This review examines recent data to provide a timely update on the overall information gathered about this part of the genome, focusing on the advances in the knowledge of its origin, its evolution, and its potential functional roles.


Sign in / Sign up

Export Citation Format

Share Document