Physiologic Limitation of Omega Exists in Patients after the Norwood Palliation and Is Underestimated by the Arterial Venous Oxygen Saturation Difference

2006 ◽  
Vol 1 (6) ◽  
pp. 294-299
Author(s):  
Anthony F. Rossi ◽  
Danyal M. Khan ◽  
Leo Lopez
2021 ◽  
Vol 141 (3) ◽  
pp. 527-533
Author(s):  
P. Moog ◽  
M. Dozan ◽  
J. Betzl ◽  
I. Sukhova ◽  
H. Kükrek ◽  
...  

Abstract Introduction Although the WALANT technique’s long-term safeness has been demonstrated in many studies, there are only few data investigating its short-term effects on tissue perfusion and oxygen levels. It was hypothesized that, temporarily, critical levels of tissue perfusion may occur. Methods Seventeen patients, who were scheduled for different procedures in WALANT technique, were injected with 5–7 ml of 1% Articain containing 1:200,000 epinephrine at the finger base. Capillary-venous oxygen saturation, hemoglobin volume in the capillaries, and relative blood flow in the fingertips were recorded once per second by white light spectrometry and laser Doppler flowmetry before, during and after injection for an average of 32 min. Results Clinically, no persistent tissue malperfusion was observed, and there were no postoperative complications. Capillary-venous oxygen saturation was reduced by ≥ 30% in seven patients. Critical levels of oxygen saturation were detected in four patients during 13 intervals, each lasting for 132.5 s on average. Oxygen saturation returned to noncritical values in all patients by the end of the observation period. Blood flow in the fingertips was reduced by more than 30% in nine patients, but no critical levels were observed, as with the hemoglobin. Three patients demonstrated a reactive increase in blood flow of more than 30% after injection. Conclusions Injection of tumescent local anesthesia containing epinephrine into finger base may temporarily cause a substantial reduction in blood flow and lead to critical levels of oxygen saturation in the fingertips. However, this was fully reversible within minutes and does not cause long-term complications.


2021 ◽  
Vol 10 (Supplement_1) ◽  
Author(s):  
J Josiassen ◽  
OKL Helgestad ◽  
NLJ Udesen ◽  
A Banke ◽  
PH Frederiksen ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): The Danish Heart Foundation Unrestricted research grant from Abiomed Background No strong evidence exists regarding the treatment of cardiogenic shock (CS) caused by acute right ventricular (RV) failure which has mainly consisted of vasoactive drugs. There is expert agreement that treatment with the recently developed Impella RP is feasible, but no previous studies have compared vasoactive treatment strategies with the Impella RP in terms of cardiac unloading and end-organ perfusion. Hypothesis Treatment with the Impella RP device will be associated with lower RV myocardial workload (pressure-volume area) compared to vasoactive treatment strategies and can furthermore be achieved without compromising organ perfusion. Methods CS was induced by a stepwise injection of polyvinyl alcohol microspheres into the right coronary artery in twenty adult female Danish landrace pigs weighing 75-80 kg. After induction of CS, the pigs were allocated to one of the two interventions for 180 minutes: 1) vasoactive therapy comprised a continuous infusion of norepinephrine (0.1 µg/kg/min) for the first 30 minutes, supplemented by an infusion of milrinone (0.4 µg/kg/min) for the remaining 150 minutes or 2) immediate insertion of and treatment with the Impella RP.  The results are presented as median [Q1;Q3]. Results Treatment with the Impella RP was associated with a lower RV workload compared to the vasoactive group, while no difference was observed with regards to left ventricular workload among intervention groups, Figure 1. Renal venous oxygen saturation increased to a similar degree following both interventions compared to the state of CS. A trend towards a higher cerebral venous oxygen saturation was observed with norepinephrine compared to Impella RP (Impella RP 51 [47;61] % vs Norepinephrine 62 [57;71] % ; p = 0.07), which became significantly higher with the addition of milrinone (Impella RP 45 [32;63] % vs Norepinephrine +Milrinone 73 [66;81] %; p = 0.002). Conclusion In this large animal model of profound CS caused by predominantly RV failure the Impella RP unloaded the failing RV. The vasoactive treatment, however, caused a higher cerebral venous oxygen saturation, while both interventions increased renal venous oxygen saturation to a similar degree. Abstract Figure 1


1991 ◽  
Vol XXXV (6) ◽  
pp. 327
Author(s):  
T. M. SCALEA ◽  
R. W. HARTNETT ◽  
A. O. DUNCAN ◽  
N. A. ATWEH ◽  
T. F. PHILLIPS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document