Influence of Steeping Solution and Storage Temperature on the Color Change of Garlic

2010 ◽  
Vol 75 (1) ◽  
pp. C108-C112 ◽  
Author(s):  
Song Hwan Bae ◽  
Seog-Won Lee ◽  
Mi-Ryung Kim ◽  
Jin Man Kim ◽  
Hyung Joo Suh
2005 ◽  
Vol 39 (9) ◽  
pp. 1462-1466 ◽  
Author(s):  
Pascal André ◽  
Salvatore Cisternino ◽  
Fouad Chiadmi ◽  
Audrey Toledano ◽  
Joël Schlatter ◽  
...  

BACKGROUND: The proteasome inhibitor bortezomib (BTZ), used in antineoplastic chemotherapy, must be diluted in NaCl 0.9% for injection and stored for no more than 3 hours in a syringe or 8 hours in a vial. Better information on its stability could improve storage. OBJECTIVE: To assess the stability of BTZ solution (1 mg/mL) in syringes and vials. METHODS: BTZ 1-mg/mL solutions were prepared by adding sterile NaCl 0.9% to Velcade vials containing 3.5 mg of lyophilized BTZ. Syringes were filled with 1 mL of solution and stored in the dark at 5 °C or 60 °C; others were not protected from light and stored at 22 °C. Velcade vials containing 1 mL of solution were stored at 5 °C in the dark. Samples were taken at various times over 23 days and assayed in duplicate. An HPLC method for assaying the stability of BTZ was validated. Appearance and pH were recorded. RESULTS: There was no color change or precipitation in the samples, and the pH was stable. Oxidation, light, and storage temperature all affected the chemical stability of BTZ. The mean concentrations of BTZ in syringes stored for 2, 3, and 5 days at 60, 22, and 5 °C were >95% of the initial concentration. The mean concentration of BTZ in vials stored for 5 days at 5 °C was >95% of the initial concentration. CONCLUSIONS: BTZ stored refrigerated in vials or syringes and protected from light is chemically stable for 5 days after reconstitution.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 163
Author(s):  
Mai Al-Dairi ◽  
Pankaj B. Pathare ◽  
Rashid Al-Yahyai

Transport duration affects the vibration level generated which has adverse effects on fresh produce during transportation. Furthermore, temperature affects the quality of fresh commodities during storage. This study evaluated physical changes in tomatoes during transportation and storage. Tomatoes were transported at three distances (100, 154, and 205 km) from a local farm and delivered to the Postharvest Laboratory where vibration acceleration was recorded per distance. Tomato was stored at two different temperatures (10 °C and 22 °C) for 12 days. The physical qualities like weight loss and firmness of all tomato samples were evaluated. RGB image acquisition system was used to assess the color change of tomato. The results of vibration showed that over 40% of accelerations occurred in the range of 0.82–1.31 cm/s2 of all transport distances. Physical quality analyses like weight loss and firmness were highly affected by transportation distance, storage temperature, and storage period. The reduction in weight loss and firmness was the highest in tomatoes transported from the farthest distance and stored at 22 °C. Lightness, yellowness, and hue values showed a high reduction as transport distance increased particularly in tomatoes stored at 22 °C. Redness, total color difference, and color indices increased significantly on tomatoes transported from 205 km and stored at 10 °C and 22 °C. The study indicated that the increase in transportation distance and storage temperature cause higher changes in the physical qualities of tomatoes.


Horticulturae ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 113
Author(s):  
Pankaj B. Pathare ◽  
Mai Al-Dairi

This study examined three main possible effects (impact, storage temperature, and duration) that cause and extend the level of bruising and other quality attributes contributing to the deterioration of tomatoes. The impact threshold level required to cause bruising was conducted by subjecting tomato samples to a steel ball with a known mass from different drop heights (20, 40, and 60 cm). The samples were then divided and stored at 10 and 22 °C for 10 days for the further analysis of bruise area and any physiological, chemical, and nutritional changes at two day intervals. Six prediction models were constructed for the bruised area and other quality attribute changes of the tomato. Storage time, bruise area, weight loss, redness, total color change, color index, total soluble solids, and pigments content (lycopene and carotenoids) showed a significant (p < 0.05) increase with the increase of drop height (impact level) and storage temperature. After 10 days of storage, high drop impact and storage at 22 °C generated a higher reduction in firmness, lightness, yellowness, and hue° (color purity). Additionally, regression model findings showed the significant effect of storage duration, storage temperature, and drop height on the measured variables (bruise area, weight loss, firmness, redness, total soluble solids, and lycopene) at a 5% probability level with a determination coefficient (R2) ranging from 0.76 to 0.95. Bruising and other quality attributes could be reduced by reducing the temperature during storage. This study can help tomato transporters, handlers, and suppliers to understand the mechanism of bruising occurrence and how to reduce it.


HortScience ◽  
2001 ◽  
Vol 36 (5) ◽  
pp. 937-940 ◽  
Author(s):  
Ron Porat ◽  
Xuqiao Feng ◽  
Moshe Huberman ◽  
David Galili ◽  
Raphael Goren ◽  
...  

'Oroblanco' is an early-maturing pummelo-grapefruit hybrid (Citrus grandis Osbeck × C. paradisi Macf.). The fruit are usually picked and marketed while the peel color is still green; however, in some cases they can lose this green color during postharvest shipping and storage, which diminishes their commercial value. The effects of storage temperatures, gibberellic acid (GA), ethylene, and 1-methylcyclopropene (1-MCP) on the degreening of 'Oroblanco' fruit were examined. Storage temperature was critical for retaining fruit color: at 2 °C the fruit remained green for a period up to 5 weeks, whereas at storage temperatures of 6, 12, and 20 °C there was a progressive increase in the rate of degreening. Applications of GA, either as preharvest sprays or as postharvest dip treatments, effectively retained the green fruit color. Ethylene exposures up to 100 μL·L-1 for 3 days had only a slight effect on fruit degreening, and 1-MCP treatments up to 200 nL·L-1 for 16 hours had no effect at all. The slight influence of ethylene and the ineffectiveness of 1-MCP on fruit color change can not be attributed to difficulties in their application, since in the same experiments ethylene markedly induced peduncle abscission, and 1-MCP effectively inhibited this ethylene effect. Accordingly, ethylene had only a relatively small effect on the induction of chlorophyllase enzyme activity in green 'Oroblanco' peel tissue.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2339
Author(s):  
So-Yul Yun ◽  
Jee-Young Imm

Age gelation is a major quality defect in ultra-high-temperature (UHT) pasteurized milk during extended storage. Changes in plasmin (PL)-induced sedimentation were investigated during storage (23 °C and 37 °C, four weeks) of UHT skim milk treated with PL (2.5, 10, and 15 U/L). The increase in particle size and broadening of the particle size distribution of samples during storage were dependent on the PL concentration, storage period, and storage temperature. Sediment analysis indicated that elevated storage temperature accelerated protein sedimentation. The initial PL concentration was positively correlated with the amount of protein sediment in samples stored at 23 °C for four weeks (r = 0.615; p < 0.01), whereas this correlation was negative in samples stored at 37 °C for the same time (r = −0.358; p < 0.01) due to extensive proteolysis. SDS-PAGE revealed that whey proteins remained soluble over storage at 23 °C for four weeks, but they mostly disappeared from the soluble phase of PL-added samples after two weeks’ storage at 37 °C. Transmission electron micrographs of PL-containing UHT skim milk during storage at different temperatures supported the trend of sediment analysis well. Based on the Fourier transform infrared spectra of UHT skim milk stored at 23 °C for three weeks, PL-induced particle size enlargement was due to protein aggregation and the formation of intermolecular β-sheet structures, which contributed to casein destabilization, leading to sediment formation.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 374
Author(s):  
Teresa Szczęsna ◽  
Ewa Waś ◽  
Piotr Semkiw ◽  
Piotr Skubida ◽  
Katarzyna Jaśkiewicz ◽  
...  

The aim of this study was to determine the influence of storage temperature and time on physicochemical parameters of starch syrups recommended for the winter feeding of bee colonies. The studies included commercially available three starch syrups and an inverted saccharose syrup that were stored at different temperatures: ca. 20 °C, 10–14 °C, and ca. 4 °C. Physicochemical parameters of fresh syrups (immediately after purchase) and syrups after 3, 6, 9, 12, 15, 18, 21, and 24 months of storage at the abovementioned temperatures were measured. It was observed that the rate of unfavorable changes in chemical composition of starch syrups and the inverted saccharose syrup, mainly the changes in the 5-hydroxymethylfurfural (HMF) content, depended on the type of a syrup and storage conditions (temperature, time). Properties of tested starch syrups intended for winter feeding of bees stored at ca. 20 °C maintained unchanged for up to 6 months, whereas the same syrups stored at lower temperatures (10–14 °C) maintained unchanged physicochemical parameters for about 12 months. In higher temperatures, the HMF content increased. To date, the influence of this compound on bees has not been thoroughly investigated.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 527
Author(s):  
Katarzyna Czyzewska ◽  
Anna Trusek

The current requirements of industrial biocatalysis are related to economically beneficial and environmentally friendly processes. Such a strategy engages low-temperature reactions. The presented approach is essential, especially in food processes, where temperature affects the quality and nutritional value foodstuffs. The subject of the study is the hydrolysis of lactose with the commercial lactase NOLA™ Fit 5500 (NOLA). The complete decomposition of lactose into two monosaccharides gives a sweeter product, recommended for lactose intolerant people and those controlling a product’s caloric content. The hydrolysis reaction was performed at 15 °C, which is related to milk transportation and storage temperature. The enzyme showed activity over the entire range of substrate concentrations (up to 55 g/L lactose). For reusability and easy isolation, the enzyme was encapsulated in a sodium alginate network. Its stability allows carrying out six cycles of the complete hydrolysis of lactose to monosaccharides, lasting from two to four hours. During the study, the kinetic description of native and encapsulated NOLA was conducted. As a result, the model of competitive galactose inhibition and glucose mixed influence (competitive inhibition and activation) was proposed. The capsule size does not influence the reaction rate; thus, the substrate diffusion into capsules can be omitted from the process description. The prepared 4 mm capsules are easy to separate between cycles, e.g., using sieves.


Sign in / Sign up

Export Citation Format

Share Document