scholarly journals Super‐resolved local recruitment of CLDN5 to filtration slits implicates a direct relationship with podocyte foot process effacement

Author(s):  
Florian Tesch ◽  
Florian Siegerist ◽  
Eleonora Hay ◽  
Nadine Artelt ◽  
Christoph Daniel ◽  
...  
2014 ◽  
Vol 97 (7) ◽  
pp. e38-e39
Author(s):  
George W. Burke ◽  
Jei-Wen Chang ◽  
Victoriano Pardo ◽  
Junichiro Sageshima ◽  
Linda Chen ◽  
...  

1979 ◽  
Vol 72 (4) ◽  
pp. 529-532 ◽  
Author(s):  
William M. Murphy ◽  
Frank L. Moretta ◽  
Alina F. Jukkola

2016 ◽  
Vol 130 (24) ◽  
pp. 2317-2327 ◽  
Author(s):  
Chang-Yien Chan ◽  
Kar-Hui Ng ◽  
Jinmiao Chen ◽  
Jinhua Lu ◽  
Caroline Guat-Lay Lee ◽  
...  

Podocyte foot process effacement and proteinuria seen in our interleukin-13 (IL-13) overexpression rat model of minimal change-like nephropathy was associated with marked down-regulation of podocyte-related genes and activation of Vav1-Rac1-induced actin cytoskeleton rearrangement in the podocytes.


2020 ◽  
Vol 318 (2) ◽  
pp. F518-F530
Author(s):  
Brian R. Stotter ◽  
Brianna E. Talbot ◽  
Diane E. Capen ◽  
Nadine Artelt ◽  
Junwei Zeng ◽  
...  

Mucin-type O-linked glycosylation, a posttranslational modification affecting the stability and biophysical characteristics of proteins, requires C1GalT1 (T synthase) and its obligate, X-linked chaperone Cosmc. Hypomorphic C1GalT1 mutations cause renal failure via not yet established mechanisms. We hypothesize that impaired Cosmc-dependent O-glycosylation in podocytes is sufficient to cause disease. Podocyte-specific Cosmc knockout mice were generated and phenotyped to test this hypothesis. Female heterozygous mice displaying mosaic inactivation of Cosmc in podocytes due to random X-linked inactivation were also examined. Mice with podocyte-specific Cosmc deletion develop profound albuminuria, foot process effacement, glomerular sclerosis, progressive renal failure, and impaired survival. Glomerular transcriptome analysis reveals early changes in cell adhesion, extracellular matrix organization, and chemokine-mediated signaling pathways, coupled with podocyte loss. Expression of the O-glycoprotein podoplanin was lost, while Tn antigen, representing immature O-glycans, was most abundantly found on podocalyxin. In contrast to hemizygous male and homozygous female animals, heterozygous female mosaic animals developed only mild albuminuria, focal foot process effacement, and nonprogressive kidney disease. Ultrastructurally, Cosmc-deficient podocytes formed Tn antigen-positive foot processes interdigitating with those of normal podocytes but not with other Cosmc-deficient cells. This suggests a cell nonautonomous mechanism for mucin-type O-glycoproteins in maintaining podocyte function. In summary, our findings demonstrated an essential and likely cell nonautonomous role for mucin-type O-glycosylation for podocyte function.


Sign in / Sign up

Export Citation Format

Share Document