Tanshinone IIA from Salvia miltiorrhiza exerts anti‐fibrotic effects on cardiac fibroblasts and rat heart tissues by suppressing the levels of pro‐fibrotic factors: The key role of miR‐618

Author(s):  
Na Yan ◽  
Chunqing Xiao ◽  
Xianggui Wang ◽  
Zufang Xu ◽  
Jiangyong Yang
2020 ◽  
Author(s):  
Liye Chen ◽  
Lili Wei ◽  
Qiongyang Yu ◽  
Haozhe Shi ◽  
George Liu

Abstract Background: Acute myocardial infarction (AMI) is the leading cause of death globally and has thus placed a heavy burden on healthcare. Tanshinone IIA (TSA) is a major active compound, extracted from Salvia miltiorrhiza Bunge, that possesses various pharmacological activities. The aim of the present study was to investigate the role of TSA in AMI and its underlying mechanism of action.Results: We have shown that TSA decreased the apoptosis rate, the amount of LDH, MDA as well as ROS of cardiomyocytes. Meantime, it elevated mitochondrial membrane potential (MMP) which was decreased by H/R treatment. It was also determined that miR-124-5p targets AK003290 directly. TSA up-regulated the expression of AK003290 and its function can be reversed by knock down of AK003290 as well as miR-124-5p overexpression.Conclusion: TSA exerts the protective role against H/R induced apoptosis, oxidative and MMP loss of cardiomyocytes via regulating AK003290 and miR-124-5p signaling.


2019 ◽  
Author(s):  
Liye Chen ◽  
Lili Wei ◽  
Qiongyang Yu ◽  
Haozhe Shi ◽  
George Liu

Abstract Objective Acute myocardial infarction (AMI) is the leading cause of death and one of the heaviest healthy burden globally nowadays. Tanshinone IIA (TSA) is the major active compound extracted form Salvia miltiorrhiza Bunge possessing various of pharmacology activities. The present study aimed at investigating the role of TSA in AMI and underlying mechsniam.Methods Quantitative real-time PCR (qRT-PCR) and western blot assay were performed to detect the expression of genes and proteins. Cell apoptosis was detected by Annexin/V PI staining and flow cytometry. The amount of LDH, MDA and ROS were detected using commercial kits. FISH experiment was used to detect the expression of AK003290 in cardiomyocytes. Luciferace activity assay was performed to verify the interaction between AK003290 and miR-124-5p.Results We have shown that TSA decreased the apoptosis rate, the amount of LDH, MDA as well as ROS of cardiomyocytes. Meantime, it elevated mitochondrial membrane potential (MMP) which was decreased by H/R treatment. It was also determined that miR-124-5p targets AK003290 directly. TSA up-regulated the expression of AK003290 and its function can be reversed by knock down of AK003290 as well as miR-124-5p overexpression.Conclusion TSA exerts the protective role against H/R induced apoptosis, oxidative and MMP loss of cardiomyocytes via regulating AK003290 and miR-124-5p signaling.


2020 ◽  
Author(s):  
Liye Chen ◽  
Lili Wei ◽  
Qiongyang Yu ◽  
Haozhe Shi ◽  
George Liu

Abstract Background: Acute myocardial infarction (AMI) is the leading cause of death globally and has thus placed a heavy burden on healthcare. Tanshinone IIA (TSA) is a major active compound, extracted from Salvia miltiorrhiza Bunge, that possesses various pharmacological activities. The aim of the present study was to investigate the role of TSA in AMI and its underlying mechanism of action.Results: We have shown that TSA decreased the apoptosis rate, the amount of LDH, MDA as well as ROS of cardiomyocytes. Meantime, it elevated mitochondrial membrane potential (MMP) which was decreased by H/R treatment. It was also determined that miR-124-5p targets AK003290 directly. TSA up-regulated the expression of AK003290 and its function can be reversed by knock down of AK003290 as well as miR-124-5p overexpression.Conclusion: TSA exerts the protective role against H/R induced apoptosis, oxidative and MMP loss of cardiomyocytes via regulating AK003290 and miR-124-5p signaling.


2020 ◽  
Vol 134 (1) ◽  
pp. 71-72
Author(s):  
Naseer Ahmed ◽  
Masooma Naseem ◽  
Javeria Farooq

Abstract Recently, we have read with great interest the article published by Ibarrola et al. (Clin. Sci. (Lond.) (2018) 132, 1471–1485), which used proteomics and immunodetection methods to show that Galectin-3 (Gal-3) down-regulated the antioxidant peroxiredoxin-4 (Prx-4) in cardiac fibroblasts. Authors concluded that ‘antioxidant activity of Prx-4 had been identified as a protein down-regulated by Gal-3. Moreover, Gal-3 induced a decrease in total antioxidant capacity which resulted in a consequent increase in peroxide levels and oxidative stress markers in cardiac fibroblasts.’ We would like to point out some results stated in the article that need further investigation and more detailed discussion to clarify certain factors involved in the protective role of Prx-4 in heart failure.


2015 ◽  
Vol 282 (1821) ◽  
pp. 20152147 ◽  
Author(s):  
Teresa Kennedy-Lydon ◽  
Nadia Rosenthal

The hearts of lower vertebrates such as fish and salamanders display scarless regeneration following injury, although this feature is lost in adult mammals. The remarkable capacity of the neonatal mammalian heart to regenerate suggests that the underlying machinery required for the regenerative process is evolutionarily retained. Recent studies highlight the epicardial covering of the heart as an important source of the signalling factors required for the repair process. The developing epicardium is also a major source of cardiac fibroblasts, smooth muscle, endothelial cells and stem cells. Here, we examine animal models that are capable of scarless regeneration, the role of the epicardium as a source of cells, signalling mechanisms implicated in the regenerative process and how these mechanisms influence cardiomyocyte proliferation. We also discuss recent advances in cardiac stem cell research and potential therapeutic targets arising from these studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianglian Zhou ◽  
Yuting Pan ◽  
Yue Wang ◽  
Bojun Wang ◽  
Yu Yan ◽  
...  

AbstractThe liposoluble tanshinones are bioactive components in Salvia miltiorrhiza and are widely investigated as anti-cancer agents, while the molecular mechanism is to be clarified. In the present study, we identified that the human fragile histidine triad (FHIT) protein is a direct binding protein of sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of Tanshinone IIA (TSA), with a Kd value of 268.4 ± 42.59 nM. We also found that STS inhibited the diadenosine triphosphate (Ap3A) hydrolase activity of FHIT through competing for the substrate-binding site with an IC50 value of 2.2 ± 0.05 µM. Notably, near 100 times lower binding affinities were determined between STS and other HIT proteins, including GALT, DCPS, and phosphodiesterase ENPP1, while no direct binding was detected with HINT1. Moreover, TSA, Tanshinone I (TanI), and Cryptotanshinone (CST) exhibited similar inhibitory activity as STS. Finally, we demonstrated that depletion of FHIT significantly blocked TSA’s pro-apoptotic function in colorectal cancer HCT116 cells. Taken together, our study sheds new light on the molecular basis of the anti-cancer effects of the tanshinone compounds.


Sign in / Sign up

Export Citation Format

Share Document