Differences in physicochemical quality, texture and fractal dimensions of tilapia fillets in different specifications and partitions

Author(s):  
Zheng Chen ◽  
Aiguo Feng
1992 ◽  
Vol 2 (12) ◽  
pp. 2181-2190 ◽  
Author(s):  
Christian Münkel ◽  
Dieter W. Heermann

TAPPI Journal ◽  
2013 ◽  
Vol 12 (3) ◽  
pp. 17-23 ◽  
Author(s):  
WANHEE IM ◽  
HAK LAE LEE ◽  
HYE JUNG YOUN ◽  
DONGIL SEO

Preflocculation of filler particles before their addition to pulp stock provides the most viable and practical solution to increase filler content while minimizing strength loss. The characteristics of filler flocs, such as floc size and structure, have a strong influence on preflocculation efficiency. The influence of flocculant systems on the structural characteristics of filler flocs was examined using a mass fractal analysis method. Mass fractal dimensions of filler flocs under high shear conditions were obtained using light diffraction spectroscopy for three different flocculants. A single polymer (C-PAM), a dual cationic polymer (p-DADMAC/C-PAM) and a C-PAM/micropolymer system were used as flocculants, and their effects on handsheet properties were investigated. The C-PAM/micropolymer system gave the greatest improvement in tensile index. The mass fractal analysis showed that this can be attributed to the formation of highly dense and spherical flocs by this flocculant. A cross-sectional analysis of the handsheets showed that filler flocs with more uniform size were formed when a C-PAM/micropolymer was used. The results suggest that a better understanding of the characteristics of preflocculated fillers and their influence on the properties of paper can be gained based on a fractal analysis.


2020 ◽  
pp. 6-11
Author(s):  
Anton Kasatkin ◽  
Anna Nigmatullina ◽  
Mikhail Kopytov

The article presents the results of studies of osmolality and pH of 0,9 % sodium chloride of various manufacturers. To obtain data on the pH value, the data used in the passports are used, and the indicators of its osmolality are de- termined using laboratory tests. 0,9 % sodium chloride from different manufacturers has different pH and osmolality. Knowing the actual values of physico-chemical parameters can increase the accuracy of the results of future clinical studies, which compare the pharmacokinetics and pharmacodynamics of modern plasma-substituting solutions and a solution of 0,9 % sodium chloride.


2013 ◽  
Vol 37 (12) ◽  
pp. 1854
Author(s):  
Baoyan ZHANG ◽  
Haiyang YU ◽  
Yudong CHENG ◽  
Yinzhe JIN

1998 ◽  
Vol 38 (2) ◽  
pp. 9-15 ◽  
Author(s):  
J. Guan ◽  
T. D. Waite ◽  
R. Amal ◽  
H. Bustamante ◽  
R. Wukasch

A rapid method of determining the structure of aggregated particles using small angle laser light scattering is applied here to assemblages of bacteria from wastewater treatment systems. The structure information so obtained is suggestive of fractal behaviour as found by other methods. Strong dependencies are shown to exist between the fractal structure of the bacterial aggregates and the behaviour of the biosolids in zone settling and dewatering by both pressure filtration and centrifugation methods. More rapid settling and significantly higher solids contents are achievable for “looser” flocs characterised by lower fractal dimensions. The rapidity of determination of structural information and the strong dependencies of the effectiveness of a number of wastewater treatment processes on aggregate structure suggests that this method may be particularly useful as an on-line control tool.


2020 ◽  
Vol 8 ◽  
Author(s):  
Leny Montheil ◽  
Virginia G. Toy ◽  
James M. Scott ◽  
Thomas M. Mitchell ◽  
David P. Dobson

In natural friction melts, or pseudotachylites, clast textures and glass compositions can influence the frictional behavior of faults hosting pseudotachylites, and are, in turn, sensitive to the processes involved in pseudotachylite formation. Quantification of these parameters in situations where the host rock composition and formation conditions are well-constrained, such as analogue experiments, may yield calibrations that can be employed in analysis of natural pseudotachylites. In this paper, we experimentally-generated pseudotachylites in granitoid rocks (tonalite and Westerly granite) at Pconf = 40 MPa and slip rates of ∼0.1 m s−1, comparable to the conditions under which natural pseudotachylite is known to form in Earth’s upper crust. We find variations in both clast textures and glass compositions that reflect formation processes, and probably influence the frictional behavior of similar natural faults hosting pseudotachylite. Quantification of particle size and shape distribution with a semi-automatic image analysis method, combined with analysis of glass and host-rock composition of these experimentally generated pseudotachylites, reveals that the textures of pseudotachylite material evolved by combinations of 1) comminution, 2) heterogeneous frictional flash melting, and 3) homogeneous (diffusive) clast melting and/or marginal decrepitation. Fractal dimensions of pseudotachylite-hosted clasts (D ∼ 3) that are greater than those of marginal fragmented host rock particles (gouge, D ∼ 2.4), reflect an increase of the intensity of comminution by slip localisation during a pre-melting phase. Chemical analyses demonstrate that these pseudotachylite glasses were generated by frictional flash melting, where host rock phases melt individually. Biotite is the least resistant to melting, feldspar intermediate, and quartz is the most resistant. The peudotachylite glass generated in these experiments has an alkaline composition, is depleted in SiO2 compared to the bulk host-rock, and shows heterogeneous compositions in a single sample related to proximity to host-rock minerals. The percentage contributions of host rock phases to the melt, calculated by a mixing model, shows that glass compositions are dominated by plagioclase and biotite. Within the melt, margins of clasts were dissolved uniformly by diffusion and/or affected by marginal decrepitation, resulting in convex and round shapes with convexities averaging ∼0.8 and circularities averaging ∼0.65.


2003 ◽  
Vol 06 (02) ◽  
pp. 241-249
Author(s):  
JOSEPH L. PE

Many sequences from number theory, such as the primes, are defined by recursive procedures, often leading to complex local behavior, but also to graphical similarity on different scales — a property that can be analyzed by fractal dimension. This paper computes sample fractal dimensions from the graphs of some number-theoretic functions. It argues for the usefulness of empirical fractal dimension as a distinguishing characteristic of the graph. Also, it notes a remarkable similarity between two apparently unrelated sequences: the persistence of a number, and the memory of a prime. This similarity is quantified using fractal dimension.


Sign in / Sign up

Export Citation Format

Share Document