scholarly journals Species differences drive spatial scaling of foraging patterns in herbivorous reef fishes

Oikos ◽  
2021 ◽  
Author(s):  
Cher F. Y. Chow ◽  
Emmy Wassénius ◽  
Maria Dornelas ◽  
Andrew S. Hoey
Author(s):  
Edward D. DeLamater ◽  
Walter R. Courtenay ◽  
Cecil Whitaker

Comparative scanning electron microscopy studies of fish scales of different orders, families, genera and species within genera have demonstrated differences which warrant elaboration. These differences in detail appear to be sufficient to act as “fingerprints”, at least, for family differences. To date, the lateral line scales have been primarily studied. These demonstrate differences in the lateral line canals; the pattern of ridging with or without secondary protuberances along the edges; the pattern of spines or their absence on the anterior border of the scales; the presence or absence of single or multiple holes on the ventral and dorsal sides of the lateral line canal covers. The distances between the ridges in the pattern appear likewise to be important.A statement of fish scale structure and a comparison of family and species differences will be presented.The authors wish to thank Dr. Donald Marzalek and Mr. Wallace Charm of the Marine and Atmospheric Laboratory of the University of Miami and Dr. Sheldon Moll and Dr. Richard Turnage of AMR for their exhaustive help in these preliminary studies.


2019 ◽  
Vol 133 (4) ◽  
pp. 474-487 ◽  
Author(s):  
Eloísa M. Guerreiro Martins ◽  
Antonio C. de A. Moura ◽  
Christa Finkenwirth ◽  
Michael Griesser ◽  
Judith M. Burkart

2020 ◽  
Vol 649 ◽  
pp. 125-140
Author(s):  
DS Goldsworthy ◽  
BJ Saunders ◽  
JRC Parker ◽  
ES Harvey

Bioregional categorisation of the Australian marine environment is essential to conserve and manage entire ecosystems, including the biota and associated habitats. It is important that these regions are optimally positioned to effectively plan for the protection of distinct assemblages. Recent climatic variation and changes to the marine environment in Southwest Australia (SWA) have resulted in shifts in species ranges and changes to the composition of marine assemblages. The goal of this study was to determine if the current bioregionalisation of SWA accurately represents the present distribution of shallow-water reef fishes across 2000 km of its subtropical and temperate coastline. Data was collected in 2015 using diver-operated underwater stereo-video surveys from 7 regions between Port Gregory (north of Geraldton) to the east of Esperance. This study indicated that (1) the shallow-water reef fish of SWA formed 4 distinct assemblages along the coast: one Midwestern, one Central and 2 Southern Assemblages; (2) differences between these fish assemblages were primarily driven by sea surface temperature, Ecklonia radiata cover, non-E. radiata (canopy) cover, understorey algae cover, reef type and reef height; and (3) each of the 4 assemblages were characterised by a high number of short-range Australian and Western Australian endemic species. The findings from this study suggest that 4, rather than the existing 3 bioregions would more effectively capture the shallow-water reef fish assemblage patterns, with boundaries having shifted southwards likely associated with ocean warming.


Sign in / Sign up

Export Citation Format

Share Document