Discrete Convex Analysis and Its Applications in Operations: A Survey

Author(s):  
Xin Chen ◽  
Menglong Li
2009 ◽  
Vol 01 (01) ◽  
pp. 1-23 ◽  
Author(s):  
AKIYOSHI SHIOURA

We consider the problem of maximizing a nondecreasing submodular set function under a matroid constraint. Recently, Calinescu et al. (2007) proposed an elegant framework for the approximation of this problem, which is based on the pipage rounding technique by Ageev and Sviridenko (2004), and showed that this framework indeed yields a (1 - 1/e)-approximation algorithm for the class of submodular functions which are represented as the sum of weighted rank functions of matroids. This paper sheds a new light on this result from the viewpoint of discrete convex analysis by extending it to the class of submodular functions which are the sum of M ♮-concave functions. M ♮-concave functions are a class of discrete concave functions introduced by Murota and Shioura (1999), and contain the class of the sum of weighted rank functions as a proper subclass. Our result provides a better understanding for why the pipage rounding algorithm works for the sum of weighted rank functions. Based on the new observation, we further extend the approximation algorithm to the maximization of a nondecreasing submodular function over an integral polymatroid. This extension has an application in multi-unit combinatorial auctions.


Sign in / Sign up

Export Citation Format

Share Document