scholarly journals Ramification theory and perfectoid spaces

2014 ◽  
Vol 150 (5) ◽  
pp. 798-834 ◽  
Author(s):  
Shin Hattori

AbstractLet $K_1$ and $K_2$ be complete discrete valuation fields of residue characteristic $p>0$. Let $\pi _{K_1}$ and $\pi _{K_2}$ be their uniformizers. Let $L_1/K_1$ and $L_2/K_2$ be finite extensions with compatible isomorphisms of rings $\mathcal{O}_{K_1}/(\pi _{K_1}^m)\, {\simeq }\, \mathcal{O}_{K_2}/(\pi _{K_2}^m)$ and $\mathcal{O}_{L_1}/(\pi _{K_1}^m)\, {\simeq }\, \mathcal{O}_{L_2}/(\pi _{K_2}^m)$ for some positive integer $m$ which is no more than the absolute ramification indices of $K_1$ and $K_2$. Let $j\leq m$ be a positive rational number. In this paper, we prove that the ramification of $L_1/K_1$ is bounded by $j$ if and only if the ramification of $L_2/K_2$ is bounded by $j$. As an application, we prove that the categories of finite separable extensions of $K_1$ and $K_2$ whose ramifications are bounded by $j$ are equivalent to each other, which generalizes a theorem of Deligne to the case of imperfect residue fields. We also show the compatibility of Scholl’s theory of higher fields of norms with the ramification theory of Abbes–Saito, and the integrality of small Artin and Swan conductors of $p$-adic representations with finite local monodromy.

2021 ◽  
Vol 43 ◽  
pp. e12
Author(s):  
Eudes Antonio Costa ◽  
Deyfila Da Silva Lima ◽  
Élis Gardel da Costa Mesquita ◽  
Keidna Cristiane Oliveira Souza

The digital roots S* (x), of a n positive integer is the digit 0 ≤ b ≤ 9 obtained through an iterative digit sum process, where each iteration is obtained from the previous result so that only the b digit remains. For example, the iterated sum of 999999 is 9 because 9 + 9 + 9 + 9 + 9 + 9 = 54 and 5 + 4 = 9. The sum of the digits of a positive integer, and even the digital roots, is a recurring subject in mathematical competitions and has been addressed in several papers, for example in Ghannam (2012), Ismirli (2014) or Lin (2016). Here we extend the application Sast to a positive rational number x with finite decimal representation. We highlight the following result: given a rational number x, with finite decimal representation, and the sum of its digits is 9, so when divided x by powers of 2, the number resulting also has the sum of its digits 9. Fact that also occurs when the x number is divided by powers of 5. Similar results were found when the x digit sum is 3 or 6.


1972 ◽  
Vol 46 ◽  
pp. 97-109
Author(s):  
Susan Williamson

Let k denote the quotient field of a complete discrete rank one valuation ring R of unequal characteristic and let p denote the characteristic of R̅; assume that R contains a primitive pth root of unity, so that the absolute ramification index e of R is a multiple of p — 1, and each Gallois extension K ⊃ k of degree p may be obtained by the adjunction of a pth root.


Author(s):  
PALOMA BENGOECHEA

Abstract We refine a previous construction by Akhtari and Bhargava so that, for every positive integer m, we obtain a positive proportion of Thue equations F(x, y) = h that fail the integral Hasse principle simultaneously for every positive integer h less than m. The binary forms F have fixed degree ≥ 3 and are ordered by the absolute value of the maximum of the coefficients.


1998 ◽  
Vol 09 (06) ◽  
pp. 653-668 ◽  
Author(s):  
HAO CHEN ◽  
SHIHOKO ISHII

In this paper we show the lower bound of the set of non-zero -K2 for normal surface singularities establishing that this set has no accumulation points from above. We also prove that every accumulation point from below is a rational number and every positive integer is an accumulation point. Every rational number can be an accumulation point modulo ℤ. We determine all accumulation points in [0, 1]. If we fix the value -K2, then the values of pg, pa, mult, embdim and the numerical indices are bounded, while the numbers of the exceptional curves are not bounded.


1967 ◽  
Vol 15 (4) ◽  
pp. 249-255
Author(s):  
Sean Mc Donagh

1. In deriving an expression for the number of representations of a sufficiently large integer N in the formwhere k: is a positive integer, s(k) a suitably large function of k and pi is a prime number, i = 1, 2, …, s(k), by Vinogradov's method it is necessary to obtain estimates for trigonometrical sums of the typewhere ω = l/k and the real number a satisfies 0 ≦ α ≦ 1 and is “near” a rational number a/q, (a, q) = 1, with “large” denominator q. See Estermann (1), Chapter 3, for the case k = 1 or Hua (2), for the general case. The meaning of “near” and “arge” is made clear below—Lemma 4—as it is necessary for us to quote Hua's estimate. In this paper, in Theorem 1, an estimate is obtained for the trigonometrical sumwhere α satisfies the same conditions as above and where π denotes a squarefree number with r prime factors. This estimate enables one to derive expressions for the number of representations of a sufficiently large integer N in the formwhere s(k) has the same meaning as above and where πri, i = 1, 2, …, s(k), denotes a square-free integer with ri prime factors.


1985 ◽  
Vol 98 ◽  
pp. 117-137 ◽  
Author(s):  
Noburo Ishii

Let m be a non-square positive integer. Let K be the Galois extension over the rational number field Q generated by and . Then its Galois group over Q is the dihedral group D4 of order 8 and has the unique two-dimensional irreducible complex representation ψ. In view of the theory of Hecke-Weil-Langlands, we know that ψ defines a cusp form of weight one (cf. Serre [6]).


Author(s):  
Harold Polo

Exponential Puiseux semirings are additive submonoids of [Formula: see text] generated by almost all of the nonnegative powers of a positive rational number, and they are natural generalizations of rational cyclic semirings. In this paper, we investigate some of the factorization invariants of exponential Puiseux semirings and briefly explore the connections of these properties with semigroup-theoretical invariants. Specifically, we provide exact formulas to compute the catenary degrees of these monoids and show that minima and maxima of their sets of distances are always attained at Betti elements. Additionally, we prove that sets of lengths of atomic exponential Puiseux semirings are almost arithmetic progressions with a common bound, while unions of sets of lengths are arithmetic progressions. We conclude by providing various characterizations of the atomic exponential Puiseux semirings with finite omega functions; in particular, we completely describe them in terms of their presentations.


1997 ◽  
Vol 40 (2) ◽  
pp. 353-365 ◽  
Author(s):  
Bart de Smit

Let K be a complete field with respect to a discrete valuation and let L be a finite Galois extension of K. If the residue field extension is separable then the different of L/K can be expressed in terms of the ramification groups by a well-known formula of Hilbert. We will identify the necessary correction term in the general case, and we give inequalities for ramification groups of subextensions L′/K in terms of those of L/K. A question of Krasner in this context is settled with a counterexample. These ramification phenomena can be related to the structure of the module of differentials of the extension of valuation rings. For the case that [L: K] = p2, where p is the residue characteristic, this module is shown to determine the correction term in Hilbert's formula.


Sign in / Sign up

Export Citation Format

Share Document