scholarly journals Derived categories of Gushel–Mukai varieties

2018 ◽  
Vol 154 (7) ◽  
pp. 1362-1406 ◽  
Author(s):  
Alexander Kuznetsov ◽  
Alexander Perry

We study the derived categories of coherent sheaves on Gushel–Mukai varieties. In the derived category of such a variety, we isolate a special semiorthogonal component, which is a K3 or Enriques category according to whether the dimension of the variety is even or odd. We analyze the basic properties of this category using Hochschild homology, Hochschild cohomology, and the Grothendieck group. We study the K3 category of a Gushel–Mukai fourfold in more detail. Namely, we show this category is equivalent to the derived category of a K3 surface for a certain codimension 1 family of rational Gushel–Mukai fourfolds, and to the K3 category of a birational cubic fourfold for a certain codimension 3 family. The first of these results verifies a special case of a duality conjecture which we formulate. We discuss our results in the context of the rationality problem for Gushel–Mukai varieties, which was one of the main motivations for this work.

Author(s):  
D. Huybrechts

Based on the work of Orlov, Kawamata, and others, this chapter shows that the (numerical) Kodaira dimension and the canonical ring are preserved under derived equivalence. The same techniques can be used to derive the invariance of Hochschild cohomology under derived equivalence. Going one step further, it is shown that the nefness of the canonical bundle is detected by the derived category. The chapter also studies the relation between derived and birational (or rather K-) equivalence. The special case of a central conjecture predicts that two birational Calabi-Yau varieties have equivalent derived categories.


2013 ◽  
Vol 212 ◽  
pp. 87-96
Author(s):  
Henning Krause ◽  
Greg Stevenson

AbstractFor an exact category having enough projective objects, we establish a bijection between thick subcategories containing the projective objects and thick subcategories of the stable derived category. Using this bijection, we classify thick subcategories of finitely generated modules over strict local complete intersections and produce generators for the category of coherent sheaves on a separated Noetherian scheme with an ample family of line bundles.


2020 ◽  
Vol 296 (3-4) ◽  
pp. 1387-1427 ◽  
Author(s):  
Henning Krause

Abstract This note proposes a new method to complete a triangulated category, which is based on the notion of a Cauchy sequence. We apply this to categories of perfect complexes. It is shown that the bounded derived category of finitely presented modules over a right coherent ring is the completion of the category of perfect complexes. The result extends to non-affine noetherian schemes and gives rise to a direct construction of the singularity category. The parallel theory of completion for abelian categories is compatible with the completion of derived categories. There are three appendices. The first one by Tobias Barthel discusses the completion of perfect complexes for ring spectra. The second one by Tobias Barthel and Henning Krause refines for a separated noetherian scheme the description of the bounded derived category of coherent sheaves as a completion. The final appendix by Bernhard Keller introduces the concept of a morphic enhancement for triangulated categories and provides a foundation for completing a triangulated category.


2017 ◽  
Vol 153 (5) ◽  
pp. 947-972 ◽  
Author(s):  
Genki Ouchi

We prove that a very general smooth cubic fourfold containing a plane can be embedded into an irreducible holomorphic symplectic eightfold as a Lagrangian submanifold. We construct the desired irreducible holomorphic symplectic eightfold as a moduli space of Bridgeland stable objects in the derived category of the twisted K3 surface corresponding to the cubic fourfold containing a plane.


Author(s):  
D. Huybrechts

This chapter is devoted to results by Bondal and Orlov which show that for varieties with ample (anti-)canonical bundle, the bounded derived category of coherent sheaves determines the variety. Except for the case of elliptic curves, this settles completely the classification of derived categories of smooth curves. The complexity of the derived category is reflected by its group of autoequivalences. This is studied by means of ample sequences.


Author(s):  
P. O. Gneri ◽  
M. Jardim ◽  
D. D. Silva

Let [Formula: see text] be small category and [Formula: see text] an arbitrary category. Consider the category [Formula: see text] whose objects are functors from [Formula: see text] to [Formula: see text] and whose morphisms are natural transformations. Let [Formula: see text] be another category, and again, consider the category [Formula: see text]. Now, given a functor [Formula: see text] we construct the induced functor [Formula: see text]. Assuming [Formula: see text] and [Formula: see text] to be abelian categories, it follows that the categories [Formula: see text] and [Formula: see text] are also abelian. We have two main goals: first, to find a relationship between the derived category [Formula: see text] and the category [Formula: see text]; second relate the functors [Formula: see text] and [Formula: see text]. We apply the general results obtained to the special case of quiver sheaves.


Author(s):  
Amalendu Krishna

AbstractFor a tame Deligne-Mumford stack X with the resolution property, we show that the Cartan-Eilenberg resolutions of unbounded complexes of quasicoherent sheaves are K-injective resolutions. This allows us to realize the derived category of quasi-coherent sheaves on X as a reflexive full subcategory of the derived category of X-modules.We then use the results of Neeman and recent results of Kresch to establish the localization theorem of Thomason-Trobaugh for the K-theory of perfect complexes on stacks of above type which have coarse moduli schemes. As a byproduct, we get a generalization of Krause's result about the stable derived categories of schemes to such stacks.We prove Thomason's classification of thick triangulated tensor subcategories of D(perf / X). As the final application of our localization theorem, we show that the spectrum of D(perf / X) as defined by Balmer, is naturally isomorphic to the coarse moduli scheme of X, answering a question of Balmer for the tensor triangulated categories arising from Deligne-Mumford stacks.


2021 ◽  
Vol 13 (1) ◽  
pp. 31
Author(s):  
Francisco Bulnes

Triangulated derived categories are considered which establish a commutative scheme (triangle) for determine or compute a hypercohomology of motives for the obtaining of solutions of the field equations. The determination of this hypercohomology arises of the derived category $\textup{DM}_{\textup {gm}}(k)$,  which is of the motivic objects whose image is under $\textup {Spec}(k)$  that is to say, an equivalence of the underlying triangulated tensor categories, compatible with respective functors on $\textup{Sm}_{k}^{\textup{Op}}$. The geometrical motives will be risked with the moduli stack to holomorphic bundles. Likewise, is analysed the special case where complexes $C=\mathbb{Q}(q)$,  are obtained when cohomology groups of the isomorphism $H_{\acute{e}t}^{p}(X,F_{\acute{e}t})\cong (X,F_{Nis})$,   can be vanished for  $p>\textup{dim}(Y)$.  We observe also the Beilinson-Soul$\acute{e}$ vanishing  conjectures where we have the vanishing $H^{p}(F,\mathbb{Q}(q))=0, \ \ \textup{if} \ \ p\leq0,$ and $q>0$,   which confirms the before established. Then survives a hypercohomology $\mathbb{H}^{q}(X,\mathbb{Q})$. Then its objects are in $\textup{Spec(Sm}_{k})$.  Likewise, for the complex Riemannian manifold the integrals of this hypercohomology are those whose functors image will be in $\textup{Spec}_{H}\textup{SymT(OP}_{L_{G}}(D))$, which is the variety of opers on the formal disk $D$, or neighborhood of all point in a surface $\Sigma$.  Likewise, will be proved that $\mathrm{H}^{\vee}$,  has the decomposing in components as hyper-cohomology groups which can be characterized as H- states in Vec$_\mathbb{C}$, for field equations $d \textup{da}=0$,  on the general linear group with $k=\mathbb{C}$.  A physics re-interpretation of the superposing, to the dual of the spectrum $\mathrm{H}^{\vee}$,  whose hypercohomology is a quantized version of the cohomology space $H^{q}(Bun_{G},\mathcal{D}^{s})=\mathbb{H}^{q}_{G[[z]]}(\mathrm{G},(\land^{\bullet}[\Sigma^{0}]\otimes \mathbb{V}_{critical},\partial))$ is the corresponding deformed derived category for densities $\mathrm{h} \in \mathrm{H}$, in quantum field theory.


Author(s):  
EMMA BRAKKEE

Abstract For infinitely many d, Hassett showed that special cubic fourfolds of discriminant d are related to polarised K3 surfaces of degree d via their Hodge structures. For half of the d, each associated K3 surface (S, L) canonically yields another one, (Sτ, Lτ). We prove that Sτ is isomorphic to the moduli space of stable coherent sheaves on S with Mukai vector (3, L, d/6). We also explain for which d the Hilbert schemes Hilb n (S) and Hilb n (Sτ) are birational.


2019 ◽  
Vol 155 (5) ◽  
pp. 902-911 ◽  
Author(s):  
Nero Budur ◽  
Ziyu Zhang

We give a proof of the formality conjecture of Kaledin and Lehn: on a complex projective K3 surface, the differential graded (DG) algebra$\operatorname{RHom}^{\bullet }(F,F)$is formal for any sheaf$F$polystable with respect to an ample line bundle. Our main tool is the uniqueness of the DG enhancement of the bounded derived category of coherent sheaves. We also extend the formality result to derived objects that are polystable with respect to a generic Bridgeland stability condition.


Sign in / Sign up

Export Citation Format

Share Document