scholarly journals A Boiti-Leon Pimpinelli equations with time-conformable derivative

Author(s):  
Kamal Ait Touchent ◽  
Zakia Hammouch ◽  
Toufik Mekkaoui ◽  
Canan Unlu

In this paper, we derive some new soliton solutions to $(2+1)$-Boiti-Leon Pempinelli equations with conformable derivative by using an expansion technique based on the Sinh-Gordon equation. The obtained solutions have different expression such as trigonometric, complex and hyperbolic functions. This powerful and simple technique can be used to investigate solutions of other  nonlinear partial differential equations.

Exact, particular solutions of the double sine Gordon equation in n dimensional space are constructed. Under certain restrictions these solutions are N solitons, where N ≤ 2 q — 1 and q is the dimensionality of spacetime. The method of solution, known as the base equation technique, relates solutions of nonlinear partial differential equations to solutions of linear partial differential equations. This method is reviewed and its applicability to the double sine Gordon equation shown explicitly. The N soliton solutions have the remarkable property that they collapse to a single soliton when the wave vectors are parallel.


2021 ◽  
Vol 5 (4) ◽  
pp. 238
Author(s):  
Li Yan ◽  
Gulnur Yel ◽  
Ajay Kumar ◽  
Haci Mehmet Baskonus ◽  
Wei Gao

This paper presents a novel and general analytical approach: the rational sine-Gordon expansion method and its applications to the nonlinear Gardner and (3+1)-dimensional mKdV-ZK equations including a conformable operator. Some trigonometric, periodic, hyperbolic and rational function solutions are extracted. Physical meanings of these solutions are also presented. After choosing suitable values of the parameters in the results, some simulations are plotted. Strain conditions for valid solutions are also reported in detail.


Author(s):  
Tiague Takongmo Guy ◽  
Jean Roger Bogning

The physics system that helps us in the study of this paper is a nonlinear hybrid electrical line with crosslink capacitor. Meaning it is composed of two different nonlinear hybrid parts Linked by capacitors with identical constant capacitance. We apply Kirchhoff laws to the circuit of the line to obtain new set of four nonlinear partial differential equations which describe the simultaneous dynamics of four solitary waves. Furthermore, we apply efficient mathematical methods based on the identification of coefficients of basic hyperbolic functions to construct exact solutions of those set of four nonlinear partial differential equations. The obtained results have enabled us to discover that, one of the two nonlinear hybrid electrical line with crosslink capacitor that we have modeled accepts the simultaneous propagation of a set of four solitary waves of type (Pulse; Pulse; Pulse; Pulse), while the other accepts the simultaneous propagation of a set of four solitary waves of type (Kink; Kink; Kink; Kink) when certain conditions we have established are respected. We ameliorate the quality of the signals by changing the sinusoidal waves that are supposed to propagate in the hybrid electrical lines with crosslink capacitor to solitary waves which are propagating in the new nonlinear hybrid electrical lines; we therefore, facilitate the choice of the type of line relative to the type of signal that we want to transmit.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yusuf Pandir ◽  
Halime Ulusoy

We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE), we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Shailesh A. Bhanotar ◽  
Mohammed K. A. Kaabar

In this paper, a novel analytical method for solving nonlinear partial differential equations is studied. This method is known as triple Laplace transform decomposition method. This method is generalized in the sense of conformable derivative. Important results and theorems concerning this method are discussed. A new algorithm is proposed to solve linear and nonlinear partial differential equations in three dimensions. Moreover, some examples are provided to verify the performance of the proposed algorithm. This method presents a wide applicability to solve nonlinear partial differential equations in the sense of conformable derivative.


2009 ◽  
Vol 2009 ◽  
pp. 1-16
Author(s):  
Paul Bracken

The intrinsic geometry of surfaces and Riemannian spaces will be investigated. It is shown that many nonlinear partial differential equations with physical applications and soliton solutions can be determined from the components of the relevant metric for the space. The manifolds of interest are surfaces and higher-dimensional Riemannian spaces. Methods for specifying integrable evolutions of surfaces by means of these equations will also be presented.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 164-169
Author(s):  
Maysaa Mohamed Al Qurashi

AbstractIn this paper, we examine conservation laws (Cls) with conformable derivative for certain nonlinear partial differential equations (PDEs). The new conservation theorem is used to the construction of nonlocal Cls for the governing systems of equation. It is worth noting that this paper introduces for the first time, to our knowledge, the analysis for Cls to systems of PDEs with a conformable derivative.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yong Zhang ◽  
Huanhe Dong ◽  
Jiuyun Sun ◽  
Zhen Wang ◽  
Yong Fang ◽  
...  

How to solve the numerical solution of nonlinear partial differential equations efficiently and conveniently has always been a difficult and meaningful problem. In this paper, the data-driven quasiperiodic wave, periodic wave, and soliton solutions of the KdV-mKdV equation are simulated by the multilayer physics-informed neural networks (PINNs) and compared with the exact solution obtained by the generalized Jacobi elliptic function method. Firstly, the different types of solitary wave solutions are used as initial data to train the PINNs. At the same time, the different PINNs are applied to learn the same initial data by selecting the different numbers of initial points sampled, residual collocation points sampled, network layers, and neurons per hidden layer, respectively. The result shows that the PINNs well reconstruct the dynamical behaviors of the quasiperiodic wave, periodic wave, and soliton solutions for the KdV-mKdV equation, which gives a good way to simulate the solutions of nonlinear partial differential equations via one deep learning method.


Sign in / Sign up

Export Citation Format

Share Document