Numerical Analysis of Thermal Stress Development of Steel Slabs in a Pusher-Type Reheat Furnace

2021 ◽  
Author(s):  
Francisco Martinez ◽  
Bethany Worl ◽  
Xiang Li ◽  
Nicholas Walla ◽  
Armin Silaen ◽  
...  

Author(s):  
Francisco J. Martinez Zambrano ◽  
Bethany Worl ◽  
Xiang Li ◽  
Armin K. Silaen ◽  
Nicholas Walla ◽  
...  

Abstract During the steelmaking and hot rolling processes, various defects and cracks appear throughout the steel product. These cracks may initiate and grow throughout the hot rolling process and result in a lower quality of the product than is acceptable. The most energy-intensive part of the hot rolling process is the reheating furnace, where slabs are heated up to a target rolling temperature largely through radiant heat transfer. In the reheat furnace, large stresses may develop due to the thermal gradients within the steel product. A thermal-stress analysis is proposed based on finite element method (FEM) to study the impacts of charging temperature, slab velocity, and heating rate on stress development as the steel slab travels through an industrial pusher-type reheat furnace. Furnace zone information is taken from a previously validated computational fluid dynamics (CFD) model and applied as thermal boundaries and constraints within the thermal-stress FEM models. Temperature and stress results were taken at the core, top, bottom, top quarter, and the bottom quarter of the steel slab at different residence times. Moreover, temperature lines and contour plots taken along the length of the slab allow visualization of the gradual development of temperature and identification of the locations corresponding to temperature variations as the slabs move in the furnace. The slab temperature predicted by the FEM model was found valid when compared with industrial data. Stress predictions found similar trends with previously published works as well as evidence of thermal shock in the sub-surface near the beginning of the residence time.



2013 ◽  
Vol 38 ◽  
pp. 204-213 ◽  
Author(s):  
Ali Zaidi ◽  
Radhouane Masmoudi ◽  
Mohamed Bouhicha




Author(s):  
Francisco J. Martinez Zambrano ◽  
Armin K. Silaen ◽  
Kelly Tian ◽  
Joe Maiolo ◽  
Chenn Zhou

Abstract Steelmaking is an energy-intensive process. Thus, energy efficiency is highly important. Several stages of steelmaking involve combustion processes. One of the most energy-consuming processes in steelmaking is the slab reheating process in a reheat furnace (RF). The energy released by fuel combustion is used to heat steel slabs to their proper hot-rolling temperature. The steel slabs move through the reheat furnace passing the three stages of heating called: Preheating Zone (PZ), Heating Zone (HZ), and Soaking Zone (SZ) to finally leave the discharge door at a rolling temperature of 2375 °F. One way to improve a reheat furnace’s fuel consumption is by implementing oxygen-enriched combustion. This study investigates the implementation of oxygen-enriched combustion in a pusher-type reheat furnace. The increment of oxygen in the combustion process allows for increasing the furnace gas temperature. Consequently, the oxygen enrichment approach allows for the reduction of fuel injection. The principal goal of this investigation is to model the combustion-based on oxygen-enrichment and develop parametric studies of fuel injection rates. The different simulations aim to match the slab heat flux profile of the industrial reheat furnace pusher-type. Computational fluid dynamics are used to generate the slab heat flux distribution. To reach more uniform slab heating, oxygen and fuel ports were alternated. Also, injection angles were modified to optimize slab heating and avoid the impact of hot spots. Thermocouple readings of the industrial reheat furnace are compared to simulation results. The results determined that 40–45% fuel reduction can be achieved.



1978 ◽  
Vol 57 (4) ◽  
pp. 571-582 ◽  
Author(s):  
B.A. Lloyd ◽  
M.B. McGinley ◽  
W.S. Brown

Observations of crack damage in the tooth structure from in vivo studies and in vitro experimental thermal cycling studies were combined with numerical analysis techniques to identify and isolate the influence of thermal stresses an the creation and propagation of cracks in teeth. The factors considered in this study included: (a) variations in tooth type or geometry (molar, bicuspid, etc.), (b) tooth age, (c) material properties of the tooth, (d) the magnitude of the change in the temperature of the environment surrounding the tooth, and (e) the thermal resistance between the tooth and the medium surrounding the tooth.



2015 ◽  
Vol 744-746 ◽  
pp. 1495-1498
Author(s):  
Yi Fang ◽  
Xue Feng Song ◽  
Long Chen

This paper studied the development of stress and strain influences by different cooling rates based on the concrete thermal stress tests. furthermore, discussed the temperature control measures for early concrete placement.



2018 ◽  
Vol 54 (1) ◽  
pp. 1800219
Author(s):  
Carmen Stelian ◽  
Jessica Muzy ◽  
Serge Labor ◽  
Marc Fivel ◽  
Hugues Cabane ◽  
...  


2007 ◽  
Vol 73 (731) ◽  
pp. 814-820
Author(s):  
Koichi KAIZU ◽  
Keitaro SUEYOSHI ◽  
Hiroyuki KINOSHITA ◽  
Kiyohiko IKEDA


Sign in / Sign up

Export Citation Format

Share Document