scholarly journals Large Eddy Simulations of High Rossby Number Flow in the High Pressure Compressor Inter-Disk Cavity

2021 ◽  
Author(s):  
Deepak Saini ◽  
Richard D Sandberg
Author(s):  
Deepak Saini ◽  
Richard D. Sandberg

Abstract The focus of the present study is to understand the effect of Rayleigh number on a high Rossby number flow in a high pressure compressor (HPC) inter-disk cavity. These cavities form between the compressor disks of a gas turbine engine, and they are an integral part of the internal air cooling system. We perform highly resolved large eddy simulations for two Rayleigh numbers of 0.76 × 108 and 1.54 × 108 at a fixed Rossby number of 4.5 by solving the compressible Navier–Stokes equations. The results show a flow structure dominated by a toroidal vortex in the inner region of the cavity. In the outer region, the flow is observed to move radially outwards by Ekman layers formed on the side disks and to move radially inwards through the central core region of the cavity. An enhancement in the intensity of the radial flares is observed in the outer region of the cavity for the high Rayleigh number case with no perceivable effect in the inner region. The near shroud region is mostly dominated by the centrifugal buoyancy-induced flow and the wall Nusselt number calculated at the shroud is in close agreement with centrifugal buoyancy-induced flow without an axial bore flow.


2019 ◽  
Vol 104 (2-3) ◽  
pp. 725-751 ◽  
Author(s):  
Jerome de Laborderie ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Stephane Moreau

Author(s):  
Carlos Pérez Arroyo ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Nicolas Odier ◽  
...  

Abstract The design optimization of aviation propulsion systems by means of computational fluid dynamics is key to increase their efficiency and reduce pollutant and noise emissions. The recurrent increase in available computing power allows nowadays to perform unsteady high-fidelity computations of the different components of a gas turbine. However, these simulations are often made independently of each other and they only share average quantities at interfaces. In this work, the methodology and first results for a sectoral large-eddy simulation of an integrated high-pressure compressor and combustion chamber of a typical turbine engine architecture is proposed. In the simulation, the compressor is composed of one main blade and one splitter blade, two radial diffuser vanes and six axial diffuser vanes. The combustion chamber is composed of the contouring casing, the flame-tube and a T-shaped vaporizer. This integrated computation considers a good trade-off between accuracy of the simulation and affordable CPU cost. Results are compared between the stand-alone combustion chamber simulation and the integrated one in terms of global, integral and average quantities. It is shown that pressure perturbations generated by the interaction of the impeller blades with the diffuser vanes are propagated through the axial diffuser and enter the combustion chamber through the dilution holes and the vaporizer. Due to the high amplitude of the pressure perturbations, several variables are perturbed at the blade-passing frequency and multiples. This is also reflected on combustion where two broadband peaks appear for the global heat release.


2021 ◽  
pp. 1-22
Author(s):  
Deepak Saini ◽  
Richard Sandberg

Abstract The focus of the present study is to understand the effect of Rayleigh number on a high Rossby number flow in a high pres- sure compressor (HPC) inter-disk cavity. These cavities form between the compressor disks of a gas turbine engine, and they are an integral part of the internal air cooling system. We perform highly resolved large eddy simulations for two Rayleigh numbers of 0.76 × 108 and 1.54 × 108 at a fixed Rossby number of 4.5 by solving the compressible Navier–Stokes equations. The results show a flow structure dominated by a toroidal vortex in the inner region of the cavity. In the outer region, the flow is observed to move radially outwards by Ekman layers formed on the side disks and to move radially inwards through the central core region of the cavity. An enhancement in the intensity of the radial flares is observed in the outer region of the cavity for the high Rayleigh number case with no perceivable effect in the inner region. The near shroud region is mostly dominated by the centrifugal buoyancy-induced flow and the wall Nusselt number calculated at the shroud is in close agreement with centrifugal buoyancy-induced flow without an axial bore flow.


2020 ◽  
Vol 14 (4) ◽  
pp. 7446-7468
Author(s):  
Manish Sharma ◽  
Beena D. Baloni

In a turbofan engine, the air is brought from the low to the high-pressure compressor through an intermediate compressor duct. Weight and design space limitations impel to its design as an S-shaped. Despite it, the intermediate duct has to guide the flow carefully to the high-pressure compressor without disturbances and flow separations hence, flow analysis within the duct has been attractive to the researchers ever since its inception. Consequently, a number of researchers and experimentalists from the aerospace industry could not keep themselves away from this research. Further demand for increasing by-pass ratio will change the shape and weight of the duct that uplift encourages them to continue research in this field. Innumerable studies related to S-shaped duct have proven that its performance depends on many factors like curvature, upstream compressor’s vortices, swirl, insertion of struts, geometrical aspects, Mach number and many more. The application of flow control devices, wall shape optimization techniques, and integrated concepts lead a better system performance and shorten the duct length.  This review paper is an endeavor to encapsulate all the above aspects and finally, it can be concluded that the intermediate duct is a key component to keep the overall weight and specific fuel consumption low. The shape and curvature of the duct significantly affect the pressure distortion. The wall static pressure distribution along the inner wall significantly higher than that of the outer wall. Duct pressure loss enhances with the aggressive design of duct, incursion of struts, thick inlet boundary layer and higher swirl at the inlet. Thus, one should focus on research areas for better aerodynamic effects of the above parameters which give duct design with optimum pressure loss and non-uniformity within the duct.


Author(s):  
Alain Batailly ◽  
Mathias Legrand ◽  
Antoine Millecamps ◽  
Sèbastien Cochon ◽  
François Garcin

Recent numerical developments dedicated to the simulation of rotor/stator interaction involving direct structural contacts have been integrated within the Snecma industrial environment. This paper presents the first attempt to benefit from these developments and account for structural blade/casing contacts at the design stage of a high-pressure compressor blade. The blade of interest underwent structural divergence after blade/abradable coating contact occurrences on a rig test. The design improvements were carried out in several steps with significant modifications of the blade stacking law while maintaining aerodynamic performance of the original blade design. After a brief presentation of the proposed design strategy, basic concepts associated with the design variations are recalled. The iterated profiles are then numerically investigated and compared with respect to key structural criteria such as: (1) their mass, (2) the residual stresses stemming from centrifugal stiffening, (3) the vibratory level under aerodynamic forced response and (4) the vibratory levels when unilateral contact occurs. Significant improvements of the final blade design are found: the need for an early integration of nonlinear structural interactions criteria in the design stage of modern aircraft engines components is highlighted.


Author(s):  
Jonas Marx ◽  
Stefan Gantner ◽  
Jörn Städing ◽  
Jens Friedrichs

In recent years, the demands of Maintenance, Repair and Overhaul (MRO) customers to provide resource-efficient after market services have grown increasingly. One way to meet these requirements is by making use of predictive maintenance methods. These are ideas that involve the derivation of workscoping guidance by assessing and processing previously unused or undocumented service data. In this context a novel approach on predictive maintenance is presented in form of a performance-based classification method for high pressure compressor (HPC) airfoils. The procedure features machine learning algorithms that establish a relation between the airfoil geometry and the associated aerodynamic behavior and is hereby able to divide individual operating characteristics into a finite number of distinct aero-classes. By this means the introduced method not only provides a fast and simple way to assess piece part performance through geometrical data, but also facilitates the consideration of stage matching (axial as well as circumferential) in a simplified manner. It thus serves as prerequisite for an improved customary HPC performance workscope as well as for an automated optimization process for compressor buildup with used or repaired material that would be applicable in an MRO environment. The methods of machine learning that are used in the present work enable the formation of distinct groups of similar aero-performance by unsupervised (step 1) and supervised learning (step 2). The application of the overall classification procedure is shown exemplary on an artificially generated dataset based on real characteristics of a front and a rear rotor of a 10-stage axial compressor that contains both geometry as well as aerodynamic information. In step 1 of the investigation only the aerodynamic quantities in terms of multivariate functional data are used in order to benchmark different clustering algorithms and generate a foundation for a geometry-based aero-classification. Corresponding classifiers are created in step 2 by means of both, the k Nearest Neighbor and the linear Support Vector Machine algorithms. The methods’ fidelities are brought to the test with the attempt to recover the aero-based similarity classes solely by using normalized and reduced geometry data. This results in high classification probabilities of up to 96 % which is proven by using stratified k-fold cross-validation.


1988 ◽  
Vol 24 (7) ◽  
pp. 356-360
Author(s):  
V. B. Shnepp ◽  
A. M. Galeev ◽  
G. S. Batkis ◽  
V. M. Polyakov

Sign in / Sign up

Export Citation Format

Share Document