Statistical Analysis of Experimental Parameters in Continuous Indentation Tests Using Taguchi Method

2003 ◽  
Vol 125 (4) ◽  
pp. 406-411 ◽  
Author(s):  
Eun-chae Jeon ◽  
Joo-Seung Park ◽  
Dongil Kwon

The continuous indentation test, which applies an indentation load to a material and records the indentation depth, yields indentation tensile properties whose accuracy can vary depending on such experimental parameters as number of unloadings, unloading ratio, maximum depth ratio and indenter radius. The Taguchi method was used to quantify their effects and to determine their optimum values. Using signal-to-noise ratio calculated from the error in the indentation tensile properties, the criterions and the optimum values for the experimental parameters were presented. The indentation tensile properties evaluated with the optimum parameters were in better agreement with the tensile properties.

Author(s):  
Eun-chae Jeon ◽  
Dongil Kwon ◽  
Joo-Seung Park

Continuous indentation technique has been widely studied because of its various merits, such as simple experiments, short experiment time and nondestructive technique. It is proved that the technique can produce tensile properties from the load-depth curves without optical observation by many researches. When the experiment is performed, it is, however, very difficult to determine the values of various experimental parameters that affect derived tensile properties by inserted in numerical analysis procedure. In this study, the effects of the parameters were studied using Taguchi method which is a kind of design of experiment (DOE). The ratio of indentation depth to indenter radius, the indenter radius, the number of unloads and the unloading ratio were selected as the main parameters. The changes of derived tensile properties by the main parameters were analyzed by calculating signal-to-noise (SN) ratio. Finally, the optimum values of each parameter were determined. The tensile properties evaluated with the optimum values showed much better agreement to those from uniaxial tensile test.


Author(s):  
Yuan Xu ◽  
Hehui Lu ◽  
Defu Zhou ◽  
Jiongbin Zheng ◽  
Jianguo Zhang

A novel image matching algorithm based on both Taguchi method and spatial clustering is proposed to optimize the Scale Invariant Feature Transform (SIFT) matching results. To improve the matching accuracy, adaptive spatial clustering is used. What is more, in order to get the fitting parameters to balance matching accuracy and quantity, Taguchi method is adopted to optimize the key parameter combination including the ratio threshold of Euclidean distance and the constrain parameters in the process of adaptive spatial clustering. Moreover, signal-to-noise ratio (SNR) results are analyzed by variance to get the effect factor which is taken as the basis for the selection of optimized parameters. The optimum parameters combination is obtained eventually. The final experimental results show that the matching quality based on SIFT feature are improved significantly.


1993 ◽  
Vol 8 (5) ◽  
pp. 1068-1078 ◽  
Author(s):  
Roman Nowak ◽  
Mototsugu Sakai

The recently developed energy principle of indentation mechanics was applied to the continuous indentation test performed on pure sapphire. Three crystallographic planes, M = (10$\overline 1$0), A = (1$\overline 1$10), and C = (0001), have been indented by a symmetrical triangular pyramid (Berkovich). The distinct anisotropic behavior of the indented crystal has been observed for the maximum indentation loads of 1.961 N, 0.686 N, and 0.392 N. The indentation hysteresis loop energy and the related “true hardness parameter” have been determined for various crystallographic orientations, as well as for two different orientations of the indenter. The observed effects have been discussed in terms of the energy principle of indentation with crystallographic considerations. The effective resolved shear stresses for the slip and twinning systems were calculated and applied to the anisotropic indentation behavior. It was concluded that the energy principle is highly recommended for analyzing the data of continuous indentation tests.


Author(s):  
Masayuki Arai ◽  
Takahiro Ishikawa ◽  
Yukio Takahashi ◽  
Tomohisa Kumagai

In this paper, the procedure which can estimate creep exponent and coefficient in Norton’s law from the impression size rather than the penetration depth is discussed based upon a high-temperature creep indentation test. Firstly, an analytical solution related to the change in impression size with dwelling time at an indentation load is formulated by solving problem of infinite creeping media embedding spherical cavity subjected to an inner pressure which characterizes an indentation load. The applicability of the formula to elastic-plastic-creeping model resembling an actual response is checked by conducting non-linear finite-element analysis combined with contact option. Finally, creep indentation tests are conducted for a high-Cr ferritic heat-resisting steel. It is shown that the creep parameters at a lower stress level can be estimated at temperature 873K.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Masayuki Arai

In this paper, the procedure which can estimate creep exponent and coefficient in Norton's law of the miniature sample from the impression size rather than the penetration depth is discussed based upon a high-temperature creep indentation test. First, an analytical solution related to the change in the impression size with dwelling time at an indentation load is solved by using a well-known problem of infinite creeping media embedding spherical cavity subjected to an inner pressure which characterizes an indentation load. The applicability of the formula to elastic–plastic-creeping model resembling an actual response is checked by conducting a nonlinear finite-element analysis combined with contact option. Finally, creep indentation tests are conducted for a high-Cr ferritic heat-resisting steel, grade 122. It is shown that the creep parameters at a lower stress level can be estimated at temperature 873 K.


2007 ◽  
Vol 353-358 ◽  
pp. 2073-2076
Author(s):  
Jin Won Kim ◽  
Jong Sun Park ◽  
Jong Sung Kim ◽  
Tae Eun Jin

This study performed tensile test using small-size flat specimen and ball indentation test at room temperature to characterize the local tensile properties of bi-metallic weld joints. The weld specimens used were fabricated by joining between SA508 Gr.3 ferritic steel and Type 316 stainless steel with Alloy 82 buttering on the ferritic steel side and Alloy 82/182 weld metal. The test results showed that yield stress (YS) of weld metal was slightly higher than that of Type 316 and smaller than that of SA508 Gr.3, and ultimate tensile stress (UTS) of weld metal was similar as those of Type 316 and SA508 Gr.3 base metals. Also, the values of YS and UTS of buttering layer (Alloy 82) were nearly same as those of weld metal. Heat-affected-zones (HAZs) showed higher YS and UTS values compared to their base metals. Especially, the strengths of SA508 Gr.3 were significantly higher than those of surrounding materials. Also, it was known that the ball indentation test reasonably measured the local YS and UTS of bi-metallic weld joints.


2006 ◽  
Vol 326-328 ◽  
pp. 207-210 ◽  
Author(s):  
Ki Ho Cho ◽  
Hak Joo Lee ◽  
Jae Hyun Kim ◽  
Jong Man Kim ◽  
Yong Kweon Kim ◽  
...  

We have designed and fabricated diamond-shaped AFM cantilevers capable of performing multi-functioning tasks by using single crystal silicon (SCS) micromachining techniques. Structural improvement of the cantilever has clearly solved the crucial problems resulted from using conventional simple beam-AFM cantilever for mechanical testing. After forcecalibration of the cantilever, indentation tests are performed to determine the mechanical behaviors in micro/nano-scale as well as topographic imaging. A diamond Berkovich tip of which radius at the apex is approximately 20 nm is attached on the cantilever for the indentation test and 3D topography measurement. The indentation load-depth curves of nano-scale polymeric pattern (PAK01-UV curable blended resin) are measured and surface topography right after indenting is also obtained. Development of this novel cantilever will extend the AFM functionality into the highly sensitive mechanical testing devices in nano/pico scale.


2007 ◽  
Vol 26-28 ◽  
pp. 1239-1242
Author(s):  
Kyung Woo Lee ◽  
Kug Hwan Kim ◽  
Kwang Ho Kim ◽  
Dong Il Kwon

The development of the instrumented indentation test (IIT), which gives accurate measurements of the continuous variation in indentation load as a function of depth, has paved the way to assessing tensile properties and residual stress in addition to hardness by analyzing the indentation load-depth curve. In this study, analytic models and procedures are presented for evaluating tensile flow properties and residual stress states using IIT. Tensile properties were obtained by defining representative stress and strain beneath the spherical indenter. The evaluation of residual stress is based on the concepts that the deviatoric stress part of the residual stress affects the indentation load-depth curve, and that analyzing the difference between the residual stressinduced indentation curve and the residual stress-free curve permits evaluation of the quantitative residual stress in a target region.


1990 ◽  
Vol 5 (10) ◽  
pp. 2100-2106 ◽  
Author(s):  
W. R. LaFontaine ◽  
B. Yost ◽  
R. D. Black ◽  
C-Y. Li

Indentation load relaxation (ILR) experiments with indentation depths in the submicron range are described. Under appropriate conditions, the ILR data are found to yield flow curves of the same shape as those based on conventional load relaxation data. Variations in flow properties as a function of depth in submicron metal films deposited on a hard substrate are detected by the experiments described.


2010 ◽  
Vol 443 ◽  
pp. 543-548
Author(s):  
Jian Long Kuo ◽  
Kai Lun Chao ◽  
Chun Cheng Kuo

Because the solder residue was found in the manufacturing process which greatly affected the product quality, the purpose of this paper was to make the product quality improved and to find an optimal solution for process parameters in the flip chip process. The experimental testing was based on SMT manufacturing process. The amount and size of solder left on passive component in the process of manufacturing were considered as the quality traits. Since too many solders left on the passive component side during flux cleaning process, it was possible that the balling would be flowed into the chip, which caused the bump short in the chip and affected the quality of the product. In this paper, orthogonal array by using Taguchi method is adopted as the effective experimental method with the least experimental runs. Also, based on the quality evaluation of signal-to-noise ratio, the ANOVA is used to evaluate the effects of quality target according to the experimental results. The results reveal that the optimization in the process is confirmed. Therefore, this study can effectively improve the solder residue in semiconductor manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document