Swirling Flow of a Viscoelastic Fluid With Free Surface—Part II: Numerical Analysis With Extended Marker-and-Cell Method

2005 ◽  
Vol 128 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Bo Yu ◽  
Jinjia Wei ◽  
Yasuo Kawaguchi

In Part I [Wei et al., 2004, 2004 ASME Int. Mech. Eng. Conference], we presented the experimental results for swirling flows of water and cetyltrimethyl ammonium chloride (CTAC) surfactant solution in a cylindrical vessel with a rotating disk located at the bottom for a Reynolds number of around 4.3×104 based on the viscosity of solvent. For the large Reynolds number, violent irregular instantaneous secondary flows at the meridional plane were observed by use of a particle image velocimetry system. Because of the limitations of our computer resources, we did not carry out direct numerical simulation for such a large Reynolds number. The LES and turbulence model are alternative methods, but a viscoelastic LES/turbulence model has not yet been developed for the surfactant solution. In this study, therefore, we limited our simulations to a laminar flow. The marker-and-cell method proposed for Newtonian flow was extended to the viscoelastic flow to track the free surface, and the effects of Weissenberg number and Froude number on the flow pattern and surface shape were studied. Although the Reynolds number is much smaller than that of the experiment, the major experimental observations, such as the inhibition of primary and secondary flows and the decrease of the dip of the free surface by the elasticity of the solution, were qualitatively reproduced in the numerical simulations.

Author(s):  
Bo Yu ◽  
Jinjia Wei ◽  
Yasuo Kawaguchi

In Part I [1], we presented the experimental results for swirling flows of water and cetyltrimethyl ammonium chloride (CTAC) surfactant solution in a cylindrical vessel with a rotating disk located at the bottom for a Reynolds number of around 4.3 × 104 based on the viscosity of solvent. For the large Reynolds number, violent irregular instantaneous secondary flows at the meridional plane were observed by use of a PIV system. Because of the limitations of our computer resources, we did not carry out DNS simulation for such a large Reynolds number. The LES and turbulence model are alternative methods, but a viscoelastic LES/turbulence model has not yet been developed for the surfactant solution. In this study, therefore, we limited our simulations to a laminar flow. The Marker-and-Cell (MAC) method proposed for Newtonian flow was extended to the viscoelastic flow to track the free surface, and the effects of Weissenberg number and Froude number on the flow pattern and surface shape were studied. Although the Reynolds number is much smaller than that of the experiment, the major experimental observations such as the inhibition of primary and secondary flows and the decrease of the dip of the free surface by the elasticity of the solution, were qualitatively reproduced in the numerical simulations.


2016 ◽  
Vol 837 ◽  
pp. 209-213
Author(s):  
Juraj Kralik ◽  
Olga Hubova ◽  
Lenka Konecna

Turbulence is a flow regime characterized by chaotic property changes. Randomness, fluctuations, vorticity and large Reynolds number (Re) are the basic characteristics of turbulent flows. In this contribution is Computer Fluid Dynamic simulation of air-flow over an obstacle in shape of “quarter-circular” object compared to the data from previous work. This comparison is focused on mean values of pressure in 16 selected points at different elevations. k-ω turbulence model performed well (convergence, time, CPU) and the overall error is 13.61 %.


1992 ◽  
Vol 114 (3) ◽  
pp. 627-642 ◽  
Author(s):  
R. F. Kunz ◽  
B. Lakshminarayana

An explicit, three-dimensional, coupled Navier–Stokes/k–ε technique has been developed and successfully applied to complex internal flow calculations. Several features of the procedure, which enable convergent and accurate calculation of high Reynolds number two-dimensional cascade flows, have been extended to three dimensions, including a low Reynolds number compressible form of the k–ε turbulence model, local time-step specification based on hyperbolic and parabolic stability requirements, and eigenvalue and local velocity scaling of artificial dissipation operators. A flux evaluation procedure, which eliminates the finite difference metric singularity at leading and trailing edges on H- and C-grids, is presented. The code is used to predict the pressure distribution, primary velocity, and secondary flows in an incompressible, turbulent curved duct flow for which CFD validation quality data are available. Also, a subsonic compressor rotor passage, for which detailed laser, rotating hot-wire, and five-hole pressure probe measurements have been made is computed. Detailed comparisons between predicted and measured core flow and near-wall velocity profiles, wake profiles, and spanwise mixing effects downstream of the rotor passage are presented for this case. It is found that the technique provides accurate and convergent engineering simulation of these complex turbulent flows.


Author(s):  
R. F. Kunz ◽  
B. Lakshminarayana

An explicit, three-dimensional, coupled Navier-Stokes/k-ε technique has been developed and successfully applied to complex internal flow calculations. Several features of the procedure, which enable convergent and accurate calculation of high Reynolds number two-dimensional cascade flows have been extended to three-dimensions, including a low Reynolds number compressible form of the k-ε turbulence model, local timestep specification based on hyperbolic and parabolic stability requirements, and eigenvalue and local velocity scaling of artificial dissipation operators. A flux evaluation procedure which eliminates the finite difference metric singularity, at leading and trailing edges, on H- and C-grids, is presented. The code is used to predict the pressure distribution, primary velocity and secondary flows in an incompressible, turbulent curved duct flow for which CFD validation quality data is available. Also, a subsonic compressor rotor passage, for which detailed laser, rotating hot-wire and five-hole pressure probe measurements have been made is computed. Detailed comparisons between predicted and measured core flow and near wall velocity profiles, wake profiles, and spanwise mixing effects downstream of the rotor passage are presented for this case. It is found that the technique provides accurate and convergent engineering simulation of these complex turbulent flows.


2005 ◽  
Vol 127 (6) ◽  
pp. 1122-1127 ◽  
Author(s):  
C. Y. Wang

The slow film flow down a doubly periodic bumpy surface is studied for the first time. Perturbations on the primary variables and the complex boundary conditions lead to a system of successive equations. The secondary flow and the free surface shape depend on the wavelength of the bumps and a surface tension-inclination parameter. There exists an optimum aspect ratio of the protuberances for maximal flow rate.


1994 ◽  
Vol 261 ◽  
pp. 169-198 ◽  
Author(s):  
F. J. Wang ◽  
G. A. Domoto

The hydrodynamic instability of a viscous incompressible flow with a free surface is studied both numerically and experimentally. While the free-surface flow is basically two-dimensional at low Reynolds numbers, a three-dimensional secondary flow pattern similar to the Taylor vorticies between two concentric cylinders appears at higher rotational speeds. The secondary flow has periodic velocity components in the axial direction and is characterized by a distinct spatially periodic variation in surface height similar to a standing wave. A numerical method, using boundary-fitted coordinates and multigrid methods to solve the Navier–Stokes equations in primitive variables, is developed to treat two-dimensional free-surface flows. A similar numerical technique is applied to the linearized three-dimensional perturbation equations to treat the onset of secondary flows. Experimental measurements have been obtained using light sheet techniques to visualize the secondary flow near the free surface. Photographs of streak lines were taken and compared to the numerical calculations. It has been shown that the solution of the linearized equations contains most of the important features of the nonlinear secondary flows at Reynolds number higher than the critical value. The experimental results also show that the numerical method predicts well the onset of instability in terms of the critical wavenumber and Reynolds number.


1998 ◽  
Vol 374 ◽  
pp. 173-194 ◽  
Author(s):  
B. YAN ◽  
N. RILEY

Viscous flow about a circular cylinder that is submerged beneath free-surface travelling waves is considered. The wave amplitude is assumed small and results are presented for a wide range of Reynolds number. Particular attention is focused on the second-order time-averaged flow that manifests itself as a circulatory motion about the cylinder. The paper complements earlier work on this problem by Yan & Riley (1996) in the large Reynolds number, boundary-layer, regime and Riley & Yan (1996) in the inviscid flow limit, and makes a comparison with experimental work by Chaplin (1984) possible.


Author(s):  
Karsten Tawackolian ◽  
Martin Kriegel

AbstractThis study looks to find a suitable turbulence model for calculating pressure losses of ventilation components. In building ventilation, the most relevant Reynolds number range is between 3×104 and 6×105, depending on the duct dimensions and airflow rates. Pressure loss coefficients can increase considerably for some components at Reynolds numbers below 2×105. An initial survey of popular turbulence models was conducted for a selected test case of a bend with such a strong Reynolds number dependence. Most of the turbulence models failed in reproducing this dependence and predicted curve progressions that were too flat and only applicable for higher Reynolds numbers. Viscous effects near walls played an important role in the present simulations. In turbulence modelling, near-wall damping functions are used to account for this influence. A model that implements near-wall modelling is the lag elliptic blending k-ε model. This model gave reasonable predictions for pressure loss coefficients at lower Reynolds numbers. Another example is the low Reynolds number k-ε turbulence model of Wilcox (LRN). The modification uses damping functions and was initially developed for simulating profiles such as aircraft wings. It has not been widely used for internal flows such as air duct flows. Based on selected reference cases, the three closure coefficients of the LRN model were adapted in this work to simulate ventilation components. Improved predictions were obtained with new coefficients (LRNM model). This underlined that low Reynolds number effects are relevant in ventilation ductworks and give first insights for suitable turbulence models for this application. Both the lag elliptic blending model and the modified LRNM model predicted the pressure losses relatively well for the test case where the other tested models failed.


Sign in / Sign up

Export Citation Format

Share Document