Thermomechanical Durability Analysis of Flip Chip Solder Interconnects: Part 1—Without Underfill

1999 ◽  
Vol 121 (4) ◽  
pp. 231-236 ◽  
Author(s):  
K. Darbha ◽  
J. H. Okura ◽  
A. Dasgupta

A generalized multi-domain Rayleigh-Ritz (MDRR) approach developed by Ling and Dasgupta (1995), is extended in this paper, to obtain the stress field in flip chip solder interconnects, under cyclic thermal loading. Elastic, Plastic and time-dependent visco-plastic analysis is demonstrated on flip chip solder interconnects. The method has been applied to other surface-mount interconnects in the past such as J-lead (Ling and Dasgupta, 1996a) and ball-grid joints (Ling and Dasgupta, 1997). The analysis results for the J-lead and ball grid joints have confirmed that the MDRR technique is capable of providing stress-strain hysteresis with adequate accuracy, at a fraction of the modeling effort required for finite element model generation and analyses. Nonlinear viscoplastic stress analysis results for flip chip interconnects without underfill are presented in this paper. The fatigue endurance of the solder joints is assessed by combining results from this stress analysis model with an energy-partitioning damage model (Dasgupta et al., 1992). The life predicted by the analytical damage model is compared with experimental results.

Author(s):  
Abm Hasan ◽  
H. Mahfuz ◽  
M. Saha ◽  
S. Jeelani

Flip-chip electronic package undergoes thermal loading during its curing process and operational life. Due to the thermal expansion coefficient (CTE) mismatch of various components, the flip-chip assembly experiences various types of thermally induced stresses and strains. Experimental measurement of these stresses and strains is extremely tedious and rigorous due to the physical limitations in the dimensions of the flip-chip assembly. While experiments provide accurate assessment of stresses and strains at certain locations, a parallel finite element (FE) analysis and analytical study can complementarily determine the displacement, strain and stress fields over the entire region of the flip-chip assembly. Such combination of experimental, finite element and analytical studies are ideal to yield a successful stress analysis of the flip-chip assembly under the various loading conditions. In this study, a two-dimensional finite element model of the flip-chip consisting of the silicon chip, underfill, solder ball, copper pad, solder mask and substrate has been developed. Various stress components under thermal loading condition ranging from −40°C to 150°C have been determined using both the finite element and analytical methods. Stresses such as (σ11, σ12, ε12 etc. are extracted and analyzed for the individual components as well as the entire assembly, and the weakest positions of the flip-chip have been discovered. Detailed description of FE modeling is presented and the different failure modes of chip assembly are discussed.


1999 ◽  
Vol 121 (4) ◽  
pp. 237-241 ◽  
Author(s):  
K. Darbha ◽  
J. H. Okura ◽  
S. Shetty ◽  
A. Dasgupta ◽  
T. Reinikainen ◽  
...  

The effect of underfill material on reliability of flip chip on board (FCOB) assemblies is investigated in this study by using two-dimensional and three-dimensional finite element simulations under thermal cycling stresses from −55°C to 80°C. Accelerated testing of FCOB conducted by the authors reveals that the presence of underfill can increase the fatigue durability of solder interconnects by two orders of magnitude. Similar data has been extensively reported in the literature. It is the intent of this paper to develop a generic and fundamental predictive model that explains this trend. While empirical models have been reported by other investigators based on experimental data, the main drawback is that many of these empirical models are not truly predictive, and can not be applied to different flip chip architectures using different underfills. In the proposed model, the energy-partitioning (EP) damage model is enhanced in order to capture the underlying mechanisms so that a predictive capability can be developed. A two-dimensional finite element model is developed for stress analysis. This model accounts for underfill over regions of solder in an approximate manner by using overlay elements, and is calibrated using a three-dimensional finite element model. The model constant for the enhanced EP model is derived by fitting model predictions (combination of two-dimensional and three-dimensional model results) to experimental results for a given temperature history. The accuracy of the enhanced EP model is then verified for a different loading profile. The modeling not only reveals the influence of underfill material on solder joint durability, but also provides the acceleration factor to assess durability under life cycle environment, from accelerated test results. Experimental results are used to validate the trends predicted by the analytical model. The final goal is to define the optimum design and process parameters of the underfill material in FCOB assemblies in order to extend the fatigue endurance of the solder joints under cyclic thermal loading environments.


2000 ◽  
Vol 123 (2) ◽  
pp. 147-155 ◽  
Author(s):  
Krishna Darbha ◽  
Abhijit Dasgupta

The nested finite element methodology (NFEM) presented in Part I of this series, is used in this paper to analyze the viscoplastic stress-state in a flip-chip-on-board (FCOB) and a chip scale package subjected to temperature cycling loads. The results are validated with conventional finite element method (CFEM). An energy-partitioning (EP) damage model is used to predict cycles to failure, based on the energy densities obtained from NFEM and CFEM, and results are compared with experiments.


1996 ◽  
Vol 118 (2) ◽  
pp. 72-79 ◽  
Author(s):  
S. Ling ◽  
A. Dasgupta

Solder joint fatigue failures are a potential reliability hazard in surface-mount electronic packages under cyclic thermal loading environment. Proper design and reliability assessment are thus crucial to ensure the fatigue endurance of the electronic packages. Accurate modeling of the stress and strain fields within the solder joint under cyclic thermal loading condition is of extreme importance since ultimately, a reasonable fatigue life estimation depends not only on a appropriate fatigue model, but more fundamentally, on accurately predicted stress and strain fields. Modeling stress and strain fields in solder joint in surface-mount electronic packages have never been an easy task since solder undergoes elastic, plastic and time dependent creep during each loading and unloading cycle. Some of the existing closed-form stress analysis models tend to oversimplify this complicated viscoplastic stress state, thus failing to give a reasonable prediction of the solder joint fatigue endurance. Extensive finite element analyses require prohibitive investment in terms of the analysis time and analyst expertise, especially when full scale elastic, plastic and creep analyses are performed. A generalized multi-domain approach proposed earlier by the authors is further developed in this paper to obtain the stress and strain fields in J-leaded surface-mount solder joint undergoing elastic-plastic deformation, under cyclic thermal environment (Ling et al., 1995). The Rayleigh-Ritz energy method based on a multi-field displacement assumption is used. In a previous paper (Ling et al., 1995), the results for analysis within elastic region had been demonstrated and were proved to be in agreement with finite element analysis. In this paper we further develop the methodology into plastic deformation region. Hysteresis loops for both the global and the local CTE mismatch problem can finally be generated. Results for two-dimensional elastic-plastic analysis are presented in the current paper. Creep deformation can be further modeled with this scheme by using time-stepping incremental techniques, and will be presented in a future paper. The final goal of this research is to predict the stress, strain and energy density distributions in the solder joint with reasonable accuracy. The fatigue assessment of the solder joint can then be performed by combining results from this stress analysis model with an appropriate damage model, for example, the energy-partitioning fatigue model (Dasgupta et al., 1992).


2012 ◽  
Vol 586 ◽  
pp. 269-273
Author(s):  
Chul Su Kim ◽  
Gil Hyun Kang

To assure the safety of the power bogies for train, it is important to perform the durability analysis of reduction gear considering a variation of velocity and traction motor capability. In this study, two types of applied load histories were constructed from driving histories considering the tractive effort and the train running curves by using dynamic analysis software (MSC.ADAMS). Moreover, this study was performed by evaluating fatigue damage of the reduction gears for rolling stock using durability analysis software (MSC.FATIGUE). The finite element model for evaluating the carburizing effect on the gear surface was used for predicting the fatigue life of the gears. The results showed that the fatigue life of the reduction gear would decrease with an increasing numbers of stops at station.


2000 ◽  
Vol 122 (4) ◽  
pp. 294-300 ◽  
Author(s):  
B. Han ◽  
P. Kunthong

Thermo-mechanical deformations of microstructures in a surface laminar circuit (SLC) substrate are quantified by microscopic moire´ interferometry. Two specimens are analyzed; a bare SLC substrate and a flip chip package assembly. The specimens are subjected to a uniform thermal loading of ΔT=−70°C and the microscopic displacement fields are documented at the identical region of interest. The nano-scale displacement sensitivity and the microscopic spatial resolution obtained from the experiments provide a faithful account of the complex deformation of the surface laminar layer and the embedded microstructures. The displacement fields are analyzed to produce the deformed configuration of the surface laminar layer and the strain distributions in the microstructures. The high modulus of underfill produces a strong coupling between the chip and the surface laminar layer, which produces a DNP-dependent shear deformation of the layer. The effect of the underfill on the deformation of the microstructures is investigated and its implications on the package reliability are discussed. [S1043-7398(00)01304-9]


2006 ◽  
Vol 324-325 ◽  
pp. 43-46
Author(s):  
Yu Pu Ma ◽  
Xin Zhi Lin ◽  
Qing Fen Li ◽  
Zhen Li

When stress is high, delaminate damage can be induced by transverse cracks. A complete parabolic shear-lag damage model containing delamination induced by transverse cracks is therefore proposed and applied to predict the stiffness reduction by transverse cracking in cross-ply laminated composite materials. The predictions of the complete parabolic shear-lag analysis model, the incomplete parabolic shear-lag analysis model, and the complete parabolic shear-lag damage model containing delamination proposed in this paper have been compared. Results show that the young’s modulus reduction values obtained by our analysis model are better agreement with the experimental ones than other models.


Sign in / Sign up

Export Citation Format

Share Document