The Viscous Behavior of Polymer Modified Lubricating Oils Over a Broad Range of Temperature and Shear Rate

1990 ◽  
Vol 112 (3) ◽  
pp. 417-425 ◽  
Author(s):  
C. S. Peter Wu ◽  
T. Melodick ◽  
S. C. Lin ◽  
J. L. Duda ◽  
E. E. Klaus

A high-shear capillary viscometer was used to determine the viscosity of mineral oil lubricants containing an olefin copolymer up to shear rates of a million reciprocal seconds. Comprehensive measurements were conducted for a range of polymer concentrations from 1–3 wt percent polymer and a temperature range of 38–120° C. The experimental technique utilizes a theoretical analysis procedure to handle the complications associated with viscous heating, the influence of pressure on the viscosity, and the excess pressure drop which occur at the entrance and exit of the capillary. The viscosity of the polymer solutions is determined over the complete range of shear rate starting from the lower Newtonian limit, through the shear-thinning region, and finally, the Newtonian behavior at high shear rates. It is shown that the standard ASTM plot for viscosity-temperature behavior can be used to correlate the viscous behavior for a given polymer concentration over this broad range of shear rates and shear stresses.

Lubricants ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 100 ◽  
Author(s):  
F. Borras ◽  
Matthijn de Rooij ◽  
Dik Schipper

The use of Environmentally Acceptable Lubricants (EALs) for stern tube lubrication is increasing. Although the machine components of a sailing vessel are designed to operate together with mineral oil-based lubricants, these are being replaced by the less environmentally harmful EALs. Little is known about the rheological performance of EALs in particular at the high shear rates that occur in stern tube seals. In this study, the viscosity and wetting properties of a set of different EALs is analysed and compared to traditional mineral oil-based lubricants using a set of experimental techniques. Some of the EALs present Newtonian behavior whereas other show shear thinning. No significant difference in surface tension was observed between the different lubricants.


2011 ◽  
Vol 106 (12) ◽  
pp. 1062-1068 ◽  
Author(s):  
Naoki Tsuji ◽  
Yuko Honda ◽  
Chikako Kamisato ◽  
Yoshiyuki Morishima ◽  
Toshiro Shibano ◽  
...  

SummaryEdoxaban is an oral, direct factor Xa (FXa) inhibitor under late-phase clinical development. This study compared the antithrombotic efficacy of edoxaban with that of an indirect FXa inhibitor, fondaparinux, in in vivo venous and arterial thrombosis models and in ex vivo perfusion chamber thrombosis model under low and high shear rates in rats. Venous and arterial thrombi were induced by platinum wire insertion into the inferior vena cava and by application of FeCl3 to the carotid artery, respectively. The perfusion chamber thrombus was formed by blood perfusion into a collagen-coated capillary at 150 s-1 (low shear rate) and 1,600 s-1 (high shear rate). Effective doses of edoxaban that reduced thrombus formation by 50% (ED50) in venous and arterial thrombosis models were 0.076 and 0.093 mg/kg/h, respectively. In contrast, ED50 of fondaparinux in the arterial thrombosis model (>10 mg/kg/h) was markedly higher compared to ED50 in the venous thrombosis model (0.021 mg/kg/h). In the perfusion chamber thrombosis model, the ratio of ED50 under high shear rate (1.13 mg/kg/h) to that under low shear rate (0.63 mg/kg/h) for edoxaban was 1.9, whereas that for fondaparinux was more than 66. While the efficacy of fondaparinux markedly decreased in arterial thrombosis and in a high-shear state, edoxaban exerted consistent antithrombotic effects regardless of flow conditions. These results suggest that shear rate is a key factor in different antithrombotic effects between edoxaban and fondaparinux.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1214-1217
Author(s):  
E Fressinaud ◽  
D Baruch ◽  
C Rothschild ◽  
HR Baumgartner ◽  
D Meyer

Although it is well established that plasma von Willebrand Factor (vWF) is essential to platelet adhesion to subendothelium at high shear rates, the role of platelet vWF is less clear. We studied the respective role of both plasma and platelet vWF in mediating platelet adhesion to fibrillar collagen in a parallel-plate perfusion chamber. Reconstituted blood containing RBCs, various mixtures of labeled washed platelets and plasma from controls or five patients with severe von Willebrand disease (vWD), was perfused through the chamber for five minutes at a shear rate of 1,600 s-1. Platelet-collagen interactions were estimated by counting the radioactivity in deposited platelets and by quantitative morphometry. When the perfusate consisted of normal platelets suspended in normal plasma, platelet deposition on the collagen was 24.7 +/- 3.6 X 10(6)/cm2 (mean +/- SEM, n = 6). Significantly less deposition (16 +/- 2.3) was observed when vWD platelets were substituted for normal platelets. In mixtures containing vWD plasma, significantly greater deposition (9 +/- 2.2) was obtained with normal than with vWD platelets (1 +/- 0.4) demonstrating a role for platelet vWF in mediating the deposition of platelets on collagen. Morphometric analysis confirmed these data. Our findings indicate that platelet, as well as plasma, vWF mediates platelet-collagen interactions at a high shear rate.


1976 ◽  
Vol 55 (3) ◽  
pp. 353-356 ◽  
Author(s):  
M. Braden ◽  
Ratna Perera

Six commercial fluoride gels have been studied, using a cone and plate viscometer. Also, the thickening agents have been analyzed using infrared spectroscopy. All gels showed stress thinning, which is the decrease of viscosity with shear rate. Such shear rate dependence is clinically convenient in that the gel will flow readily at the high shear stresses present when the gel is applied but will not flow readily under its own weight when on the tooth. Five materials containing hydroxyalkyl celluloses showed similar degrees of shear thinning. One material with a non-cellulosic thickener showed much more extreme stress thinning together with elastic behavior at low shear rates; such behavior may be clinically advantageous. All of the gels showed only slight temperature dependence of rheological properties.


1992 ◽  
Vol 289 ◽  
Author(s):  
John R. Melrose

AbstractAn overview is given of theories of aggregates under flow. These generally assume some sort of structural breakdown as the shear rate is increased. Models vary with both the rigidity of the bonding and the level of treatment of hydrodynamics. Results are presented for simulations of a Rouse model of non-rigid, (i.e. central force) weakly bonded aggregates. In large scale simulations different structures are observed at low and high shear rates. The change from one structure to another is associated with a change in the rate of shear thinning. The model captures low shear rate features of real systems absent in previous models: this feature is ascribed to agglomerate deformations. Quantitatively, the model is two orders of magnitude out from experiment but some scaling is possible.


2004 ◽  
Vol 70 (12) ◽  
pp. 7426-7435 ◽  
Author(s):  
Alexander H. Rickard ◽  
Andrew J. McBain ◽  
Amy T. Stead ◽  
Peter Gilbert

ABSTRACT The development of freshwater multispecies biofilms at solid-liquid interfaces occurs both in quiescent waters and under conditions of high shear rates. However, the influence of hydrodynamic shear rates on bacterial biofilm diversity is poorly understood. We hypothesized that different shear rates would significantly influence biofilm diversity and alter the relative proportions of coaggregating and autoaggregating community isolates. In order to study this hypothesis, freshwater biofilms were developed at five shear rates (<0.1 to 305 S−1) in a rotating concentric cylinder reactor fed with untreated potable water. Eubacterial diversity was assessed by denaturing gradient gel electrophoresis (DGGE) and culturing on R2A agar. Fifty morphologically distinct biofilm strains and 16 planktonic strains were isolated by culturing and identified by partial 16S rRNA gene sequencing, and their relatedness was determined by the construction of a neighbor-joining phylogenetic tree. Phylogenetic and DGGE analyses showed an inverse relationship between shear rate and bacterial diversity. An in vitro aggregation assay was used to assess the relative proportions of coaggregating and autoaggregating species from each biofilm. The highest proportion of autoaggregating bacteria was present at high shear rates (198 to 305 S−1). The intermediate shear rate (122 S−1) selected for the highest proportion of coaggregating bacteria (47%, or 17 of a possible 36 coaggregation interactions). Under static conditions (<0.1 S−1), 41 (33%) of a possible 125 coaggregation interactions were positive. Few coaggregation (3.3%) or autoaggregation (25%) interactions occurred between the 16 planktonic strains. In conclusion, these data show that shear rates affect biofilm diversity as well as the relative proportions of aggregating bacteria.


2021 ◽  
Vol 31 (1) ◽  
pp. 24-38
Author(s):  
Julian Sepulveda ◽  
Agnes Montillet ◽  
Dominique Della Valle ◽  
Thanina Amiar ◽  
Hubert Ranchon ◽  
...  

Abstract The viscosities of solutions formulated with xanthan gum and xanthan gum with whey protein isolates are experimentally characterized and modeled over a wide range of shear rates [10−3 to 105 s−1]. As shown by numerous studies [1, 2], the generation of vortices in the cone-plate geometry is making viscosity measurements beyond a certain shear rate unreliable. In the present work, an innovative technique, based on microfluidics and developed by the company Formulaction, has been employed to extend to high shear rates, the viscosity flow curve obtained with a rotational rheometer. The main highlights of this study are firstly, to propose a scaling law for the inertial transition in the cone-plate geometry for different diameters and angles through the determination of the maximum shear rate at which one can expect a true viscosity value. Secondly, the high shear rate measurements allow the determination of the second Newtonian plateau for these solutions thanks to the Williams-Carreau model. An attempt for the second plateau modeling is proposed following the concept of an intrinsic viscosity in the high shear equilibrium. In the same way, other fitted parameters from the Williams-Carreau law are modeled as a function of the polymer concentration. This procedure allows to provide a predictive model for the rheological behavior of xanthan gum-based solutions used in high shear processes like high pressure homogenization, emulsification, foaming, microfluidics, etc in food, pharmaceutical or cosmetics applications.


Sign in / Sign up

Export Citation Format

Share Document