Periodic Fluid Flow and Heat Transfer in a Square Cavity Due to an Insulated or Isothermal Rotating Cylinder

2009 ◽  
Vol 131 (11) ◽  
Author(s):  
Y.-C. Shih ◽  
J. M. Khodadadi ◽  
K.-H. Weng ◽  
A. Ahmed

The periodic state of laminar flow and heat transfer due to an insulated or isothermal rotating cylinder object in a square cavity is investigated computationally. A finite-volume-based computational methodology utilizing primitive variables is used. Various rotating objects (circle, square, and equilateral triangle) with different sizes are placed in the middle of a square cavity. A combination of a fixed computational grid and a sliding mesh was utilized for the square and triangle shapes. For the insulated and isothermal objects, the cavity is maintained as differentially heated and isothermal enclosures, respectively. Natural convection heat transfer is neglected. For a given shape of the object and a constant angular velocity, a range of rotating Reynolds numbers are covered for a Pr=5 fluid. The Reynolds numbers were selected so that the flow fields are not generally affected by the Taylor instabilities (Ta<1750). The periodic flow field, the interaction of the rotating objects with the recirculating vortices at the four corners, and the periodic channeling effect of the traversing vertices are clearly elucidated. The simulations of the dynamic flow fields were confirmed against experimental data obtained by particle image velocimetry. The corresponding thermal fields in relation to the evolving flow patterns and the skewness of the temperature contours in comparison to the conduction-only case were discussed. The skewness is observed to become more marked as the Reynolds number is lowered. Transient variations of the average Nusselt numbers of the respective systems show that for high Re numbers, a quasiperiodic behavior due to the onset of the Taylor instabilities is dominant, whereas for low Re numbers, periodicity of the system is clearly observed. Time-integrated average Nusselt numbers of the insulated and isothermal object systems were correlated with the rotational Reynolds number and shape of the object. For high Re numbers, the performance of the system is independent of the shape of the object. On the other hand, with lowering of the hydraulic diameter (i.e., bigger objects), the triangle and the circle exhibit the highest and lowest heat transfers, respectively. High intensity of the periodic channeling and not its frequency is identified as the cause of the observed enhancement.

Author(s):  
Y.-C. Shih ◽  
J. M. Khodadadi ◽  
K.-H. Weng ◽  
H. F. Oztop

Computational analysis of transient phenomenon followed by the periodic state of laminar flow and heat transfer due to an insulated rotating object in a square cavity is investigated. A finite-volume-based computational methodology utilizing primitive variables is used. Various rotating objects (circle, square and equilateral triangle) with different sizes are placed in the middle of the cavity. A combination of a fixed computational grid with a sliding mesh was utilized for the square and triangle shapes. The cavity is maintained as a differentially-heated enclosure and the motionless insulated object is set in rotation at time t = 0. Natural convection heat transfer is neglected. For a given shape of the object and a constant angular velocity, a range of rotating Reynolds numbers are covered for a Pr = 5 fluid. The Reynolds numbers were selected so that the flow fields are not generally affected by the Taylor instabilities (Ta &lt; 1750). The evolving flow field and the interaction of the rotating objects with the recirculating vortices at the four corners are elucidated. The corresponding thermal fields in relation to the evolving flow patterns and the skewness of the temperature contours in comparison to conduction-only case were discussed. The skewness is observed to become more marked as the Reynolds number is lowered. At the same time, similarity of the thermal fields for various shapes for the same Reynolds number varifies the appropriate selection of the hydraulic diameter. Transient variations of the average Nusselt numbers on the two walls show that for high Re numbers, a quasi-periodic behavior due to the onset of the Taylor instabilities is dominant, whereas for low Re numbers, periodicity of the system is clearly observed. Time-integrated average Nusselt number of the cavity is correlated to the rotational Reynolds number and shape of the object. The triangle object clearly gives rise to high heat transfer followed by the square and circle objects.


Author(s):  
Y.-C. Shih ◽  
J. M. Khodadadi ◽  
K.-H. Weng

Computational analysis of transient phenomenon followed by the periodic state of laminar flow and heat transfer due to a rotating object in a square cavity is investigated. A finite-volume-based computational methodology utilizing primitive variables is used. Various isothermal rotating objects (circle, square and equilateral triangle) with different sizes are placed in the middle of the cavity. A combination of a fixed computational grid with a sliding mesh was utilized for the square and triangle shapes. The motionless object is set in rotation at time t = 0 and its temperature is maintained constant but different from the temperature of the walls of the cavity. Natural convection heat transfer is neglected. For a given shape of the object and a constant angular velocity, a range of rotating Reynolds numbers are covered for a Pr = 5 fluid. The Reynolds numbers were selected so that the flow fields are not generally affected by the Taylor instabilities (Ta &lt; 1750). The evolving flow field and the interaction of the rotating objects with the recirculating vortices at the four corners are elucidated. Similarities and differences of the flow and thermal fields for various shapes is discussed. Transient variations of the average Nusselt numbers on the surface of the rotating object and cavity walls show that for high Re numbers, a quasi-periodic behavior due to the onset of Taylor instabilities is dominant, whereas for low Re numbers, periodicity of the system is clearly observed. Time-integrated average Nusselt number of the cavity is correlated to the rotational Reynolds number and shape of the object. The triangle object clearly gives rise to high heat transfer followed by the square and circle objects.


Author(s):  
Y.-C. Shih ◽  
J. M. Khodadadi ◽  
H.-W. Dai ◽  
Liwu Fan

Computational analysis of transient phenomenon followed by the periodic state of laminar flow and heat transfer due to a rectangular rotating object in a square cavity is investigated. A finite-volume-based fixed-grid/sliding mesh computational methodology utilizing primitive variables is used. Rectangular rotating objects with different aspect ratios (AR = 1, 2, 3, 4) are placed in the middle of a square cavity. The motionless object is set in rotation at time t = 0 with a constant angular velocity. For the insulated and isothermal objects, the cavity is maintained as differentially-heated and isothermal enclosures, respectively. Natural convection heat transfer is neglected. For a given shape of the object and a constant angular velocity, a range of rotating Reynolds numbers are covered for a Pr = 5 fluid. The Reynolds numbers were selected so that the flow field is not affected by the Taylor instabilities (Ta &lt; 1750). The periodic flow field, the interaction of the rotating objects with the recirculating vortices at the four corners and the periodic channelling effect of the traversing vertices are clearly elucidated. The corresponding thermal fields in relation to the evolving flow patterns and the skewness of the temperature contours in comparison to conduction-only case were discussed. The skewness is observed to become more marked as the Reynolds number is lowered. Transient variations of the average Nusselt numbers of the respective systems show that for high Re numbers, a quasi-periodic behavior due to the onset of the Taylor instabilities is dominant, whereas for low Re numbers, periodicity of the system is clearly observed. Time-integrated average Nusselt numbers of the insulated and isothermal object systems were correlated to the rotational Reynolds number and the aspect ratio of the rectangle. For high Re numbers, the performance of the system is independent of the aspect ratio. On the other hand, with lowering of the hydraulic diameter (i.e. bigger objects), objects with the highest and lowest aspect ratios exhibit the highest and lowest heat transfer, respectively. High intensity of the periodic channelling and not its frequency are identified as the cause of the observed enhancement.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
N. A. Bakar ◽  
A. Karimipour ◽  
R. Roslan

The effect of magnetic field on fluid flow and heat transfer in two-dimensional square cavity is analyzed numerically. The vertical walls are insulated; the top wall is maintained at cold temperature, Tc while the bottom wall is maintained at hot temperature, Th where Th>Tc. The dimensionless governing equations are solved using finite volume method and SIMPLE algorithm. The streamlines and isotherm plots and the variation of Nusselt numbers on hot and cold walls are presented.


1999 ◽  
Vol 122 (2) ◽  
pp. 375-385 ◽  
Author(s):  
C. R. Hedlund ◽  
P. M. Ligrani

Local flow behavior and heat transfer results are presented from two swirl chambers, which model passages used to cool the leading edges of turbine blades in gas turbine engines. Flow results are obtained in an isothermal swirl chamber. Surface Nusselt number distributions are measured in a second swirl chamber (with a constant wall heat flux boundary condition) using infrared thermography in conjunction with thermocouples, energy balances, and in situ calibration procedures. In both cases, Reynolds numbers Re based on inlet duct characteristics range from 6000 to about 20,000. Bulk helical flow is produced in each chamber by two inlets, which are tangent to the swirl chamber circumference. Important changes to local and globally averaged surface Nusselt numbers, instantaneous flow structure from flow visualizations, and distributions of static pressure, total pressure, and circumferential velocity are observed throughout the swirl chambers as the Reynolds number increases. Of particular importance are increases of local surface Nusselt numbers (as well as ones globally averaged over the entire swirl chamber surface) with increasing Reynolds number. These are tied to increased advection, as well as important changes to vortex characteristics near the concave surfaces of the swirl chambers. Higher Re also give larger axial components of velocity, and increased turning of the flow from each inlet, which gives Go¨rtler vortex pair trajectories greater skewness as they are advected downstream of each inlet. [S0889-504X(00)00502-X]


Author(s):  
Peng Zhang ◽  
Yu Rao ◽  
Yanlin Li

This paper presents a numerical study on turbulent flow and heat transfer in the channels with a novel hybrid cooling structure with miniature V-shaped ribs and dimples on one wall. The heat transfer characteristics, pressure loss and turbulent flow structures in the channels with the rib-dimples with three different rib heights of 0.6 mm, 1.0 mm and 1.5 mm are obtained for the Reynolds numbers ranging from 18,700 to 60,000 by numerical simulations, which are also compared with counterpart of a pure dimpled and pure V ribbed channel. The results show that the overall Nusselt numbers of the V rib-dimple channel with the rib height of 1.5 mm is up to 70% higher than that of the channels with pure dimples. The numerical simulations show that the arrangement of the miniature V rib upstream each dimple induces complex secondary flow near the wall and generates downwashing vortices, which intensifies the flow mixing and turbulent kinetic energy in the dimple, resulting in significant improvement in heat transfer enhancement and uniformness.


Author(s):  
C. R. Hedlund ◽  
P. M. Ligrani

Local flow behavior and heat transfer results are presented from two swirl chambers, which model passages used to cool the leading edges of turbine blades in gas turbine engines. Flow results are obtained in an isothermal swirl chamber. Surface Nusselt number distributions are measured in a second swirl chamber (with a constant wall beat flux boundary condition) using infrared thermography, in conjunction with thermocouples, energy balances, and in situ calibration procedures. In both cases, Reynolds numbers Re based on inlet duct characteristics range from 6000 to about 20000. Bulk helical flow is produced in each chamber by two inlets which ore tangent to the swirl chamber circumference. Important changes to local and globally-averaged surface Nusselt numbers, instantaneous flow structure from flow visualizations, and distributions of static pressure, total pressure, and circumferential velocity are observed throughout the swirl chambers as the Reynolds number increases. Of particular importance are increases of local surface Nusselt numbers (as well as ones globally-averaged over the entire swirl chamber surface) with increasing Reynolds number. These are tiad to increased advection, as well as important changes to vortex characteristics near the concave surfaces of the swirl chambers. Higher Re also give larger axial components of velocity, and increased turning of the flow from each inlet, which gives Görtler vnrtex pair trajectories greater skewness as they are advected downstream of each inlet.


Author(s):  
Zhong Ren ◽  
Sneha Reddy Vanga ◽  
Nathan Rogers ◽  
Phil Ligrani ◽  
Keith Hollingsworth ◽  
...  

The present study provides new heat transfer data for both the surfaces of the full coverage effusion cooling plate within a double wall cooling test facility. To produce the cooling stream, a cold-side cross-flow supply for the effusion hole array is employed. Also utilized is a unique mainstream mesh heater, which provides transient thermal boundary conditions, after mainstream flow conditions are established. For the effusion cooled surface, presented are spatially-resolved distributions of surface adiabatic film cooling effectiveness, and surface heat transfer coefficients (measured using infrared thermography). For the coolant side, presented are spatially-resolved distributions of surface Nusselt numbers (measured using liquid crystal thermography). Of interest are the effects of streamwise development, blowing ratio, and Reynolds number. Streamwise hole spacing and spanwise hole spacing (normalized by effusion hole diameter) on the effusion plate are 15 and 4, respectively. Effusion hole diameter is 6.35 mm, effusion hole angle is 25 degrees, and effusion plate thickness is 3 hole diameters. Considered are overall effusion blowing ratios from 2.9 to 7.5, with subsonic, incompressible flow, and constant freestream velocity with streamwise development, for two different mainstream Reynolds numbers. For the hot side (mainstream) of the effusion film cooling test plate, results for two mainflow Reynolds numbers of about 145000 and 96000 show that the adiabatic cooling effectiveness is generally higher for the lower Reynolds number for a particular streamwise location and blowing ratio. The heat transfer coefficient is generally higher for the low Reynolds number flow. This is due to altered supply passage flow behavior, which causes a reduction in coolant lift-off of the film from the surface as coolant momentum, relative to mainstream momentum, decreases. For the coolant side of the effusion test plate, Nusselt numbers generally increase with blowing ratio, when compared at a particular streamwise location and mainflow Reynolds number.


1999 ◽  
Vol 121 (2) ◽  
pp. 249-256 ◽  
Author(s):  
R. Pilbrow ◽  
H. Karabay ◽  
M. Wilson ◽  
J. M. Owen

In most gas turbines, blade-cooling air is supplied from stationary preswirl nozzles that swirl the air in the direction of rotation of the turbine disk. In the “cover-plate” system, the preswirl nozzles are located radially inward of the blade-cooling holes in the disk, and the swirling airflows radially outward in the cavity between the disk and a cover-plate attached to it. In this combined computational and experimental paper, an axisymmetric elliptic solver, incorporating the Launder–Sharma and the Morse low-Reynolds-number k–ε turbulence models, is used to compute the flow and heat transfer. The computed Nusselt numbers for the heated “turbine disk” are compared with measured values obtained from a rotating-disk rig. Comparisons are presented, for a wide range of coolant flow rates, for rotational Reynolds numbers in the range 0.5 X 106 to 1.5 X 106, and for 0.9 < βp < 3.1, where βp is the preswirl ratio (or ratio of the tangential component of velocity of the cooling air at inlet to the system to that of the disk). Agreement between the computed and measured Nusselt numbers is reasonably good, particularly at the larger Reynolds numbers. A simplified numerical simulation is also conducted to show the effect of the swirl ratio and the other flow parameters on the flow and heat transfer in the cover-plate system.


Author(s):  
Mohammad A. Elyyan ◽  
Danesh K. Tafti

LES calculations are conducted for flow in a channel with dimples and protrusions on opposite walls with both surfaces heated at three Reynolds numbers, ReH = 220, 940, and 9300 ranging from laminar, weakly turbulent to fully turbulent, respectively. Turbulence generated by the separated shear layer in the dimple and along the downstream rim of the dimple is primarily responsible for heat transfer augmentation on the dimple surface. On the other hand, augmentation on the protrusion surface is mostly driven by flow impingement and flow acceleration between protrusions, while the turbulence generated in the wake has a secondary effect. Heat transfer augmentation ratios of 0.99 at ReH = 220, 2.9 at ReH = 940, and 2.5 at ReH = 9300 are obtained. Both skin friction and form losses contribute to pressure drop in the channel, with form losses increasing from 45% to 80% with an increase in the Reynolds number. Friction coefficient augmentation ratios of 1.67, 4.82 and 6.37 are obtained at ReH = 220, 940, and 9300, respectively. Based on the geometry studied, it is found that dimples and protrusions may not be viable heat transfer augmentation surfaces when the flow is steady and laminar.


Sign in / Sign up

Export Citation Format

Share Document