Elastic-Plastic Response of 304 Stainless Steel Beams to Impulse Loads

1978 ◽  
Vol 45 (3) ◽  
pp. 685-687 ◽  
Author(s):  
M. J. Forrestal ◽  
M. J. Sagartz
1990 ◽  
Vol 112 (2) ◽  
pp. 152-157 ◽  
Author(s):  
Y. Niitsu ◽  
K. Ikegami

The cyclic elastic-plastic behavior of SUS 304 stainless steel was investigated experimentally under various temperatures and temperature-changing conditions. The specimens were cyclically loaded between fixed axial strain limits at constant temperatures in the range from room temperature to 600°C. The effects of the cyclic strain amplitude on the saturation property of cyclic hardening were obtained at various temperatures. The effects of temperature variations on the cyclic hardening were examined under the temperature conditions of changing between two different temperatures. From these experimental results, the effects of the temperature variation on the saturation properties were found under several temperature conditions. The three different hardening models accounting for these cyclic hardening properties were proposed. The experimental results were compared with the results calculated by those three cyclic hardening models.


1985 ◽  
Vol 107 (3) ◽  
pp. 240-245 ◽  
Author(s):  
T. Kawakubo ◽  
M. Hishida

Stress corrosion crack growth during slow strain rate testing was investigated using elastic-plastic fracture mechanics. Thin compact and center-notched specimens of sensitized Type 304 stainless steel were examined at different extension rates in high temperature oxygenated water. The analytical results showed that the crack growth rate has a best correlation with a time differential of the J-integral, which is an estimate of a crack tip deformation rate. Based on the analysis, a new mechanistic model under both monotonic and cyclic loadings was suggested, where cracking was classified into three categories depending on the environmental acceleration, i.e., mechanical cracking, corrosion enhanced mechanical cracking, and stress corrosion cracking.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
Y. L. Chen ◽  
J. R. Bradley

Considerable effort has been directed toward an improved understanding of the production of the strong and stiff ∼ 1-20 μm diameter pyrolytic carbon fibers of the type reported by Koyama and, more recently, by Tibbetts. These macroscopic fibers are produced when pyrolytic carbon filaments (∼ 0.1 μm or less in diameter) are thickened by deposition of carbon during thermal decomposition of hydrocarbon gases. Each such precursor filament normally lengthens in association with an attached catalyst particle. The subject of filamentous carbon formation and much of the work on characterization of the catalyst particles have been reviewed thoroughly by Baker and Harris. However, identification of the catalyst particles remains a problem of continuing interest. The purpose of this work was to characterize the microstructure of the pyrolytic carbon filaments and the catalyst particles formed inside stainless steel and plain carbon steel tubes. For the present study, natural gas (∼; 97 % methane) was passed through type 304 stainless steel and SAE 1020 plain carbon steel tubes at 1240°K.


Sign in / Sign up

Export Citation Format

Share Document