Direct-Write Stretchable Sensors Using Single-Walled Carbon Nanotube/Polymer Matrix

2013 ◽  
Vol 135 (1) ◽  
Author(s):  
Morteza Vatani ◽  
Yanfeng Lu ◽  
Kye-Shin Lee ◽  
Ho-Chan Kim ◽  
Jae-Won Choi

There have been increasing demands and interests in stretchable sensors with the development of flexible or stretchable conductive materials. These sensors can be used for detecting large strain, 3D deformation, and a free-form shape. In this work, a stretchable conductive sensor has been developed using single-walled carbon nanotubes (SWCNTs) and monofunctional acrylate monomers (cyclic trimethylolpropane formal acrylate and acrylate ester). The suggested sensors have been fabricated using a screw-driven microdispensing direct-write (DW) technology. To demonstrate the capabilities of the DW system, effects of dispensing parameters such as the feed rate and material flow rate on created line widths were investigated. Finally, a stretchable conductive sensor was fabricated using proper dispensing parameters, and an experiment for stretchability and resistance change was accomplished. The result showed that the sensor had a large strain range up to 90% with a linear resistance change and gauge factor ∼2.7. Based on the results, it is expected that the suggested DW stretchable sensor can be used in many application areas such as wearable electronics, tactile sensors, 3D structural electronics, etc.

Author(s):  
Mohammed Al-Rubaiai ◽  
Ryohei Tsuruta ◽  
Taewoo Nam ◽  
Umesh Gandhi ◽  
Xiaobo Tan

Abstract Inflatable structures provide significant volume and weight savings for future space and soft robotic applications. Structural health monitoring (SHM) of these structures is essential to ensuring safe operation, providing early warnings of damage, and measuring structural changes over time. In this paper, we propose the design of a single flexible strain sensor for distributed monitoring of an inflatable tube, in particular, the detection and localization of a kink should that occur. Several commercially available conductive materials, including 3D-printing filaments, conductive paint, and conductive fabrics are explored for their strain-sensing performance, where the resistance change under uniaxial tension is measured, and the corresponding gauge factor (GF) is characterized. Flexible strain sensors are then fabricated and integrated with an inflatable structure fabric using screen-printing or 3D-printing techniques, depending on the nature of the raw conductive material. Among the tested materials, the conductive paint shows the highest stability, with GF of 15 and working strain range of 2.28%. Finally, the geometry of the sensor is designed to enable distributed monitoring of an inflatable tube. In particular, for a given deformation magnitude, the sensor output shows a monotonic relationship with the location where the deformation is applied, thus enabling the monitoring of the entire tube with a single sensor.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1814 ◽  
Author(s):  
Jian Wang ◽  
Ryuki Suzuki ◽  
Kentaro Ogata ◽  
Takuto Nakamura ◽  
Aixue Dong ◽  
...  

Flexible and wearable electronics have huge potential applications in human motion detection, human–computer interaction, and context identification, which have promoted the rapid development of flexible sensors. So far the sensor manufacturing techniques are complex and require a large number of organic solvents, which are harmful not only to human health but also to the environment. Here, we propose a facile solvent-free preparation toward a flexible pressure and stretch sensor based on a hierarchical layer of graphene nanoplates. The resulting sensor exhibits many merits, including near-linear response, low strain detection limits to 0.1%, large strain gauge factor up to 36.2, and excellent cyclic stability withstanding more than 1000 cycles. Besides, the sensor has an extraordinary pressure range as large as 700 kPa. Compared to most of the reported graphene-based sensors, this work uses a completely environmental-friendly method that does not contain any organic solvents. Moreover, the sensor can practically realize the delicate detection of human body activity, speech recognition, and handwriting recognition, demonstrating a huge potential for wearable sensors.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 889
Author(s):  
Lu Liu ◽  
Libo Wang ◽  
Xuqing Liu ◽  
Wenfeng Yuan ◽  
Mengmeng Yuan ◽  
...  

Flexible and comfortable wearable electronics are as a second skin for humans as they can collect the physiology of humans and show great application in health and fitness monitoring. MXene Ti3C2Tx have been used in flexible electronic devices for their unique properties such as high conductivity, excellent mechanical performance, flexibility, and good hydrophilicity, but less research has focused on MXene-based cotton fabric strain sensors. In this work, a high-performance wearable strain sensor composed of two-dimensional (2D) MXene d-Ti3C2Tx nanomaterials and cotton fabric is reported. Cotton fabrics were selected as substrate as they are comfortable textiles. As the active material in the sensor, MXene d-Ti3C2Tx exhibited an excellent conductivity and hydrophilicity and adhered well to the fabric fibers by electrostatic adsorption. The gauge factor of the MXene@cotton fabric strain sensor reached up to 4.11 within the strain range of 15%. Meanwhile, the sensor possessed high durability (>500 cycles) and a low strain detection limit of 0.3%. Finally, the encapsulated strain sensor was used to detect subtle or large body movements and exhibited a rapid response. This study shows that the MXene@cotton fabric strain sensor reported here have great potential for use in flexible, comfortable, and wearable devices for health monitoring and motion detection.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2531
Author(s):  
Yelin Ko ◽  
Ji-seon Kim ◽  
Chi Cuong Vu ◽  
Jooyong Kim

Flexible strain sensors are receiving a great deal of interest owing to their prospective applications in monitoring various human activities. Among various efforts to enhance the sensitivity of strain sensors, pre-crack generation has been well explored for elastic polymers but rarely on textile substrates. Herein, a highly sensitive textile-based strain sensor was fabricated via a dip-coat-stretch approach: a polyester woven elastic band was dipped into ink containing single-walled carbon nanotubes coated with silver paste and pre-stretched to generate prebuilt cracks on the surface. Our sensor demonstrated outstanding sensitivity (a gauge factor of up to 3550 within a strain range of 1.5–5%), high stability and durability, and low hysteresis. The high performance of this sensor is attributable to the excellent elasticity and woven structure of the fabric substrate, effectively generating and propagating the prebuilt cracks. The strain sensor integrated into firefighting gloves detected detailed finger angles and cyclic finger motions, demonstrating its capability for subtle human motion monitoring. It is also noteworthy that this novel strategy is a very quick, straightforward, and scalable method of fabricating strain sensors, which is extremely beneficial for practical applications.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2063
Author(s):  
Tan Thong Vo ◽  
Hyeon-Jong Lee ◽  
Sang-Yun Kim ◽  
Ji Won Suk

Embedding conductive nanomaterials into elastomeric polymer matrices is one of the most promising approaches for fabricating stretchable strain sensors capable of monitoring large mechanical movements or deformation through the detection of resistance changes. Here, hybrid fillers comprising graphene and silver nanowires (AgNWs) are incorporated into extremely stretchable spandex to fabricate strain sensors. Composites containing only graphene and those containing the graphene/AgNW hybrid fillers are systematically investigated by evaluating their electrical and mechanical properties. The synergistic effect between graphene and AgNWs enable the strain sensors based on the composites to experience a large strain range of up to 120%, and low hysteresis with a high gauge factor of 150.3 at a strain of 120%. These reliable strain sensors are utilized for monitoring human motions such as heartbeats and body movements. The findings of this study indicate the significant applicability of graphene/AgNW/spandex composites in future applications that demand high-performance stretchable strain sensors.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhongyun Yuan ◽  
Zhen Pei ◽  
Muhammad Shahbaz ◽  
Qiang Zhang ◽  
Kai Zhuo ◽  
...  

AbstractSoft-strain-based sensors are being increasingly used across various fields, including wearable sensing, behavior monitoring, and electrophysiological diagnostics. However, throughout all applications, the function of these sensors is limited because of high sensitivity, high-dynamic range, and low-power consumption. In this paper, we focus on improving the sensitivity and strain range of the soft-strain-based sensor through structure, surface, and sensitive unit treatment. Nanosilver (Ag)-coated hydroxyl-functionalized multi-walled carbon nanotubes (OH-f MWCNTs) were explored for highly acute sensing. With stretching and depositing methods, Ag@OH-f MWCNTs and polydimethylsiloxane (PDMS) are fabricated into a wrinkled and sandwich structure for a soft-strain-based sensor. The electronic properties were characterized in that the gauge factor (GF) = ΔR/R0 was 412.32, and the strain range was 42.2%. Moreover, our soft-strain-based sensor exhibits features including flexibility, ultra-lightweight and a highly comfortable experience in terms of wearability. Finally, some physiological and behavioral features can be sampled by testing the exceptional resistance change, including the detection of breath, as well as facial and hand movement recognition. The experiment exhibits its superiority in terms of being highly sensitive and having an extensive range of sensing.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2442
Author(s):  
Jianpeng Zhang ◽  
Yuhang Li ◽  
Yufeng Xing

Epidermal electronic sensors (EESs) possess great advantages in the real-time and enduring monitoring of human vital information compared to the traditional medical device for intimately making contact with human skin. Skin strain is a significant and effective routine to monitor motion, heart rate, wrist pulse, and skin growth in wound healing. In this paper, a novel skin sensor combined with a ternary conductive nanocomposite (Carbon black (CB)/Decamethylcyclopentasiloxane (D5)/Silbione) and a two-stage serpentine connector is designed and fabricated to monitor skin strain. The ultrasoft (~2 kPa) and adhesive properties of the ternary conductive nanocomposite ensure the capacity of the EES to intimately couple with human skin in order to improve accuracy with a relative error of 3.39% at strain 50% as well as a large strain range (0~50%) and gauge factor (GF ~2.5). The millimeter scale EES (~5 mm × 1 mm × 100 μm), based on the micro-nano fabrication technique, consisted of a two-stage serpentine connector and screen print of the ternary conductive nanocomposite. EESs with high comprehensive performance (electrical and mechanical properties) are fabricated to confirm the analytical results and monitor the motion of a human hand. The good agreement between experimental and analytical results paves the way for bettering monitoring of skin growth during wound healing in order to avoid necrosis and scarring. This EES in monitoring the motion of a human exhibit presents a promising application for assisting prosthetic movement.


Author(s):  
Mohammed Al-Rubaiai ◽  
Ryohei Tsuruta ◽  
Umesh Gandhi ◽  
Chuan Wang ◽  
Xiaobo Tan

Stretchable strain sensors with large strain range, high sensitivity, and excellent reliability are of great interest for applications in soft robotics, wearable devices, and structure-monitoring systems. Unlike conventional template lithography-based approaches, 3D-printing can be used to fabricate complex devices in a simple and cost-effective manner. In this paper, we report 3D-printed stretchable strain sensors that embeds a flexible conductive composite material in a hyper-plastic substrate. Three commercially available conductive filaments are explored, among which the conductive thermoplastic polyurethane (ETPU) shows the highest sensitivity (gauge factor of 5), with a working strain range of 0%–20%. The ETPU strain sensor exhibits an interesting behavior where the conductivity increases with the strain. In addition, an experiment for measuring the wind speed is conducted inside a wind tunnel, where the ETPU sensor shows sensitivity to the wind speed beyond 5.6 m/s.


Author(s):  
Hongyang Shi ◽  
Xinda Qi ◽  
Yunqi Cao ◽  
Nelson Sepúlveda ◽  
Chuan Wang ◽  
...  

Abstract This paper proposes a highly stretchable strain sensor using viscous conductive materials as resistive element and introduces a simple and economic fabrication process by encapsulating the conductive materials between two layers of silicone rubbers Ecoflex 00-30. The fabrication process of the strain sensor is presented, and the properties of the viscous conductive materials are studied. Characterization shows that the sensor with conductive gels, toothpastes, carbon paint, and carbon grease can sustain a maximum tensile strain of 200% and retain good repeatability, with a strain gauge factor of 2.0, 1.75, 3.0, and 7.5, respectively. Furthermore, strain sensors with graphite and carbon nanotubes mixed with conductive gels are fabricated to explore how to improve the gauge factor. With a focus on the most promising material, conductive carbon grease, cyclic stretching tests are conducted and show good repeatability at 100% strain for 100 cycles. Lastly, it is demonstrated that the stretchable strain sensor made of carbon grease is capable of measuring finger bending. With its easy and low-cost fabrication process, large strain detection range and good gauge factor, the conductive materials-based strain sensors are promising for future biomedical, wearable electronics and rehabilitation applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jae-Won Lee ◽  
Joon Young Cho ◽  
Mi Jeong Kim ◽  
Jung Hoon Kim ◽  
Jong Hwan Park ◽  
...  

AbstractSoft electronic devices that are bendable and stretchable require stretchable electric or electronic components. Nanostructured conducting materials or soft conducting polymers are one of the most promising fillers to achieve high performance and durability. Here, we report silver nanoparticles (AgNPs) embedded with single-walled carbon nanotubes (SWCNTs) synthesized in aqueous solutions at room temperature, using NaBH4 as a reducing agent in the presence of highly oxidized SWCNTs as efficient nucleation agents. Elastic composite films composed of the AgNPs-embedded SWCNTs, Ag flake, and polydimethylsiloxane are irradiated with radiation from a Xenon flash lamp within a time interval of one second for efficient sintering of conductive fillers. Under high irradiation energy, the stretchable electrodes are created with a maximum conductivity of 4,907 S cm−1 and a highly stretchable stability of over 10,000 cycles under a 20% strain. Moreover, under a low irradiation energy, strain sensors with a gauge factor of 76 under a 20% strain and 5.4 under a 5% strain are fabricated. For practical demonstration, the fabricated stretchable electrode and strain sensor are attached to a human finger for detecting the motions of the finger.


Sign in / Sign up

Export Citation Format

Share Document