scholarly journals Experimental and Numerical Investigation of the Mechanism of Blast Wave Transmission Through a Surrogate Head

Author(s):  
Yi Hua ◽  
Praveen Kumar Akula ◽  
Linxia Gu ◽  
Jeff Berg ◽  
Carl A. Nelson

This work is to develop an experiment-validated numerical model to elucidate the wave transmission mechanisms through a surrogate head under blast loading. Repeated shock tube tests were conducted on a surrogate head, i.e., water-filled polycarbonate shell. Surface strain on the skull simulant and pressure inside the brain simulant were recorded at multiple locations. A numerical model was developed to capture the shock wave propagation within the shock tube and the fluid-structure interaction between the shock wave and the surrogate head. The obtained numerical results were compared with the experimental measurements. The experiment-validated numerical model was then used to further understand the wave transmission mechanisms from the blast to the surrogate head, including the flow field around the head, structural response of the skull simulant, and pressure distributions inside the brain simulant. Results demonstrated that intracranial pressure in the anterior part of the brain simulant was dominated by the direct blast wave propagation, while in the posterior part it was attributed to both direct blast wave propagation and skull flexure, which took effect at a later time. This study served as an exploration of the physics of blast-surrogate interaction and a precursor to a realistic head model.

Fragblast ◽  
1998 ◽  
Vol 2 (1) ◽  
pp. 39-77 ◽  
Author(s):  
K. Uenishi ◽  
H. P. Rossmanith

2011 ◽  
Vol 82 ◽  
pp. 680-685
Author(s):  
Jerzy Malachowski ◽  
Tadeusz Niezgoda

The paper is based on non–linear finite element analysis of the blast wave effects on structures, caused by the detonation of explosive materials. Dynamic response of a structure with and without elastomeric layers subjected to the shock wave produced by the detonation of high explosive materials is presented in this paper. Coupled Euler and Lagrange formulation are used in the finite element analysis of such problems to accurately represent the detonation phenomenon. Research related to blast wave propagation is not only aimed at its effect on structures but also on developing new concepts of protective panels. The research carried out on various structures (such as multi–layer panels) has been performed to find out the most efficient protection against a detonation wave. Tests of multi-layer protective panels ability to absorb the explosion energy were also conducted under field conditions and confirmed in numerical studies. The application of structural protective layers made of elastomeric material significantly reduced the blast wave thanks to dissipation capabilities. Additionally, the shape effect of structural steel elements (streamlined profile) during the interaction process with a shock wave has been also confirmed.


Sign in / Sign up

Export Citation Format

Share Document