Numerical Study on the Effect of Tandem Spacing on Flow-Induced Motions of Two Cylinders With Passive Turbulence Control

Author(s):  
Lin Ding ◽  
Li Zhang ◽  
Chunmei Wu ◽  
Eun Soo Kim ◽  
Michael M. Bernitsas

The effect of tandem spacing on the flow-induced motions (FIM) of two circular cylinders with passive turbulence control is investigated using two-dimensional (2D) unsteady Reynolds-averaged Navier–Stokes equations with the Spalart–Allmaras turbulence model. Results are compared to experiments in the range of Reynolds number of 30,000 < Re < 100,000. The center-to-center spacing between the two cylinders is varied from 2 to 6 diameters. Simulation results predict well all the ranges of FIM including vortex-induced vibrations (VIV) and galloping and match well with experimental measurements. For the upstream cylinder, the amplitude and frequency responses are not considerably influenced by the downstream cylinder when the spacing is greater than 2D. For the downstream cylinder, a rising amplitude trend in the VIV upper-branch can be observed in all the cases as is typical of flows in the TrSL3 flow regime (transition in shear layer 3; 2 × 104 < Re < 3 × 105). The galloping branch merges with the VIV upper-branch for spacing greater than three-dimensional (3D). Vortex structures show significant variation in different flow regimes in accordance with experimental observations. High-resolution postprocessing shows that the interaction between the wakes of cylinders results in various types of FIM.

Author(s):  
Lin Ding ◽  
Li Zhang ◽  
Chunmei Wu ◽  
EunSoo Kim ◽  
Michael M. Bernitsas

The effect of tandem spacing on the flow induced motions (FIM) of two circular cylinders with passive turbulence control is investigated using two-dimensional Unsteady Reynolds-Average Navier-Stokes equations with the Spalart-Allmaras turbulence model. Results are compared to experiments in the range of Reynolds number of 30,000<Re<100,000. The center-to-center spacing between the two cylinders is varied from 2 to 6 diameters. Simulation results predict well all ranges of FIM including VIV and galloping and match well with experimental measurements. For the upstream cylinder, the amplitude and frequency responses are not considerably influenced by the downstream cylinder when the spacing is greater than 2D. For the downstream cylinder, a rising amplitude trend in the VIV upper branch can be observed in all cases as is typical of flows in the TrSL3 regime. The galloping branch merges with the VIV upper branch for spacing greater than 3D. Vortex structures show significant variation in different flow regimes in accordance with experimental observations. High-resolution post-processing shows that the interaction between the wakes of cylinders result in various types of FIM.


Author(s):  
Adnan Munir ◽  
Ming Zhao ◽  
Helen Wu

Vortex-induced vibrations of two elastically mounted and rigidly coupled circular cylinders in side-by-side arrangement in steady flow are investigated numerically. The vibration of the cylinders is limited to the cross-flow direction only. The three-dimensional Navier-Stokes equations are solved using the Petrov-Galerkin Finite element method and the equation of motion is solved using the fourth order Runge Kutta method. It is well known that when the gap between two stationary side-by-side cylinders is very small, the flow between the two cylinders is biased towards one cylinder and the lift force on each cylinder is significantly smaller than that of an isolated single cylinder. The aim of this study is to investigate the effect of a small gap ratio of 0.5 between the two cylinders on the lock-in regime and the amplitude of the vibration of two side-by-side cylinders in a fluid flow. Simulations are carried out for a constant mass ratio of 2, a constant Reynolds number of 1000 and a range of reduced velocities. It is found that in the lock-in range of the reduced velocity, the two cylinders vibrate about their balance position with high amplitudes. Outside the lock-in regime the flow from the gap becomes biased towards one cylinder, which is similar to that from the gap between stationary cylinders.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Author(s):  
David Gross ◽  
Yann Roux ◽  
Benjamin Rousse ◽  
François Pétrié ◽  
Ludovic Assier ◽  
...  

The problem of Vortex-Induced Vibrations (VIV) on spool and jumper geometries is known to present several drawbacks when approached with conventional engineering tools used in the study of VIV on risers. Current recommended practices can lead to over-conservatism that the industry needs to quantify and minimize within notably cost reduction objectives. Within this purpose, the paper will present a brief critical review of the Industry standards and more particularly focus on both experimental and Computational Fluid Dynamic (CFD) approaches. Both qualitative and quantitative comparisons between basin tests and CFD results for a 2D ‘M-shape’ spool model will be detailed. The results presented here are part of a larger experimental and numerical campaign which considered a number of current velocities, heading and geometry configurations. The vibratory response of the model will be investigated for one of the current velocities and compared with the results obtained through recommended practices (e.g. Shear7 and DNV guidelines). The strategy used by the software K-FSI to solve the fluid-structure interaction (FSI) problem is a partitioned coupling solver between fluid solver (FINE™/Marine) and structural solvers (ARA). FINE™/Marine solves the Reynolds-Averaged Navier-Stokes Equations in a conservative way via the finite volume method and can work on structured or unstructured meshes with arbitrary polyhedrons, while ARA is a nonlinear finite element solver with a large displacement formulation. The experiments were conducted in the BGO FIRST facility located in La Seyne sur Mer, France. Particular attention was paid towards the model design, fabrication, instrumentation and characterization, to ensure an excellent agreement between the structural numerical model and the actual physical model. This included the use of a material with low structural damping, the performance of stiffness and decay tests in air and in still water, plus the rationalization of the instrumentation to be able to capture the response with the minimum flow perturbation or interaction due to instrumentation.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1235 ◽  
Author(s):  
Chaolong Li ◽  
Zhixun Xia ◽  
Likun Ma ◽  
Xiang Zhao ◽  
Binbin Chen

Scramjet based on solid propellant is a good supplement for the power device of future hypersonic vehicles. A new scramjet combustor configuration using solid fuel, namely, the solid fuel rocket scramjet (SFRSCRJ) combustor is proposed. The numerical study was conducted to simulate a flight environment of Mach 6 at a 25 km altitude. Three-dimensional Reynolds-averaged Navier–Stokes equations coupled with shear stress transport (SST) k − ω turbulence model are used to analyze the effects of the cavity and its position on the combustor. The feasibility of the SFRSCRJ combustor with cavity is demonstrated based on the validation of the numerical method. Results show that the scramjet combustor configuration with a backward-facing step can resist high pressure generated by the combustion in the supersonic combustor. The total combustion efficiency of the SFRSCRJ combustor mainly depends on the combustion of particles in the fuel-rich gas. A proper combustion organization can promote particle combustion and improve the total combustion efficiency. Among the four configurations considered, the combustion efficiency of the mid-cavity configuration is the highest, up to about 70%. Therefore, the cavity can effectively increase the combustion efficiency of the SFRSCRJ combustor.


Author(s):  
P. Anagnostopoulos ◽  
Ch. Dikarou ◽  
S. A. Seitanis

The results of a numerical study of the viscous oscillating flow around four circular cylinders are presented herein, for a constant frequency parameter, β, equal to 50, and Keulegan-Carpenter numbers, KC, ranging between 0.2 and 10. The cylinders were placed on the vertices of a square, whose two sides were perpendicular and two parallel to the oncoming flow, for a pitch ratio, P/D, equal to 4. The finite-element method was employed for the solution of the Navier-Stokes equations, in the formulation where the stream function and the vorticity are the field variables. The streamlines and the vorticity contours generated from the solution were used for the flow visualization. When the Keulegan-Carpenter number is lower than 4, the flow remains symmetrical with respect to the horizontal axis of symmetry of the solution domain and periodic at consecutive cycles. As KC increases to 4 the flow becomes aperiodic in different cycles, although symmetry with respect to the horizontal central line of the domain is preserved. For KC equal to 5 asymmetries appear intermittently in the flow, which are eventually amplified as KC increases still further. These asymmetries, in association with the aperiodicity at different cycles, lead to an almost chaotic configuration, as KC grows larger. For characteristic cases the flow pattern and the traces of the hydrodynamic forces are presented. In addition, the mean and r.m.s. values of the in-line and transverse forces and the hydrodynamic coefficients of the inline force were evaluated for the entire range of Keulegan-Carpenter numbers examined.


2019 ◽  
Vol 7 (10) ◽  
pp. 337 ◽  
Author(s):  
Francesco Gallerano ◽  
Giovanni Cannata ◽  
Federica Palleschi

A three-dimensional numerical study of the hydrodynamic effect produced by a system of submerged breakwaters in a coastal area with a curvilinear shoreline is proposed. The three-dimensional model is based on an integral contravariant formulation of the Navier-Stokes equations in a time-dependent curvilinear coordinate system. The integral form of the contravariant Navier-Stokes equations is numerically integrated by a finite-volume shock-capturing scheme which uses Monotonic Upwind Scheme for Conservation Laws Total Variation Diminishing (MUSCL-TVD) reconstructions and an Harten Lax van Leer Riemann solver (HLL Riemann solver). The numerical model is used to verify whether the presence of a submerged coastal defence structure, in the coastal area with a curvilinear shoreline, is able to modify the wave induced circulation pattern and the hydrodynamic conditions from erosive to accretive.


2015 ◽  
Vol 772 ◽  
pp. 552-555 ◽  
Author(s):  
Kyu Han Kim ◽  
Joni Cahyono

The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. In the present study, the numerical solution of the discredited three-dimensional, incompressible Navier-Stokes equations over an unstructured grid is accomplished with an ANSYS program. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The results trends are similar between the highest pressure distributions at the impeller also produced highest power outputs on 6 numbers of blades at impeller. The model has been validated, comparing numerical results with available experimental data.


Author(s):  
Yannis Kallinderis ◽  
Hyung Taek Ahn

Numerical prediction of vortex-induced vibrations requires employment of the unsteady Navier-Stokes equations. Current Navier-Stokes solvers are quite expensive for three-dimensional flow-structure applications. Acceptance of Computational Fluid Dynamics as a design tool for the offshore industry requires improvements to current CFD methods in order to address the following important issues: (i) stability and computation cost of the numerical simulation process, (ii) restriction on the size of the allowable time-step due to the coupling of the flow and structure solution processes, (iii) excessive number of computational elements for 3-D applications, and (iv) accuracy and computational cost of turbulence models used for high Reynolds number flow. The above four problems are addressed via a new numerical method which employs strong coupling between the flow and the structure solutions. Special coupling is also employed between the Reynolds-averaged Navier-Stokes equations and the Spalart-Allmaras turbulence model. An element-type independent spatial discretization scheme is also presented which can handle general hybrid meshes consisting of hexahedra, prisms, pyramids, and tetrahedral.


Sign in / Sign up

Export Citation Format

Share Document