Interface Characterization of Al–Cu Microlaminates Fabricated By Electrically Assisted Roll Bonding

2017 ◽  
Vol 5 (3) ◽  
Author(s):  
Marzyeh Moradi ◽  
Man-Kwan Ng ◽  
Taekyung Lee ◽  
Jian Cao ◽  
Yoosuf N. Picard

Interface characteristics of Al/Cu microlaminates fabricated by an electrically assisted roll bonding (EARB) process were studied to understand the underlying physical/chemical phenomena that lead to bond strength enhancement when applying electrical current during deformation. Peel tests were conducted for the Al/Cu roll-bonded laminates produced under 0 A, 50 A, and 150 A applied current. After peel tests using a microtensile machine, the fractured surfaces of both the Al and Cu–sides were examined using scanning electron microscopy (SEM) for fractography and SEM-based energy dispersive (EDS) analysis. Results revealed the strong dependence of the fracture path and its morphology on the strength of the bond, which is influenced by various phenomena occurring at the interface during EARB, such as microextrusion through surface microcracks, possible formation of intermetallic components and thermal softening during simultaneous application of strain and high current density.

2016 ◽  
Author(s):  
Marzyeh Moradi ◽  
Man-Kwan Ng ◽  
Taekyung Lee ◽  
Jian Cao ◽  
Yoosuf N. Picard

Interface characteristics of Al/Cu micro-laminates fabricated by an Electrically-Assisted Roll Bonding (EARB) process were studied to understand the underlying physical/chemical phenomena that lead to bond strength enhancement when applying electrical current during deformation. Peel tests were conducted for the Al/Cu roll-bonded laminates produced with no current and under 50A and 150A applied current. After peel tests using a micro-tensile machine, the fractured surfaces of both the Al and Cu–sides were examined using scanning electron microscopy (SEM) for fractography and SEM-based energy dispersive (EDS) analysis. Results revealed the strong dependence of the fracture path and its morphology on the strength of the bond, which is influenced by various phenomena occurring at the interface during EARB, such as microextrusion through surface micro-cracks, possible formation of intermetallic components and thermal softening during simultaneous application of strain and high current density.


Author(s):  
Joshua J. Jones ◽  
Laine Mears

For the current practice of lightweight engineering in the automotive sector, it is common to introduce and use low density/high strength materials instead of costly engine/drivetrain technologies. With the introduction of these materials there are commonly many manufacturing difficulties which arise during their incorporation to the vehicle. As a result, new processes which improve the manufacturability of these materials are necessary. This work examines the manufacturing technique of Electrically-Assisted Forming (EAF) where an electrical current is applied to the workpiece during deformation. As a result of the applied current, Joule heating is present which increases the temperature of the material. In this work the thermal response of sheet metal for stationary and deformation tests using this process are explored and modeled. The results of the model show good agreement for the stationary tests while the deformation model predicts that all of the applied electrical current may not be transformed into Joule heating. Thus, this work suggests from the observed response that a portion of the applied current may be directly aiding in deformation (i.e. the Electroplastic Effect).


Author(s):  
Joshua J. Jones ◽  
Laine Mears

For the current practice of improving fuel efficiency and reducing emissions in the automotive sector, it is becoming more common to use low density/high strength materials instead of costly engine/drivetrain technologies. With these materials there are normally many manufacturing difficulties that arise during their incorporation to the vehicle. As a result, new processes which improve the manufacturability of these materials are necessary. This work examines the manufacturing technique of electrically-assisted forming (EAF) where an electrical current is applied to the workpiece during deformation to modify the material's formability. In this work, the thermal response of sheet metal for stationary (i.e., no deformation) and deformation tests using this process are explored and modeled. The results of the model show good agreement for the stationary tests while for the deformation tests, the model predicts that all of the applied electrical current does not generate Joule heating. Thus, this work suggests from the observed response that a portion of the applied current may be directly aiding in deformation (i.e., the electroplastic effect). Additionally, the stress/strain response of Mg AZ31 under tensile forming using EAF is presented and compared to prior experimental work for this material.


Author(s):  
Da-Jeng Yao ◽  
Chung-Yi Hsu ◽  
Chih Chen ◽  
Sheng-Hsiang Chiu

Thermal gradient phenomena in SnAg3.5 solder joints under high current density operating were both acquired from whole device simulation and observed from experiments. A series of structural solder bump models were created and simulated by finite element software under different current density. The thermal gradient and temperature increasing were investigated under current stressing of 103 A/cm2 to 104 A/cm2 at 70°C by infrared microscopy. The magnitude of the thermal gradient is increased by increasing the applied current. The measured temperature increase due to Joule heating is as high as 55.9°C, and the thermal gradient reached 333°C/cm when stressed by 104 A/cm2, yet only 8.3°C temperature increased and the thermal gradient reached 83°C/cm when stressed by 103 A/cm2. The temperature increasing in this model is 53.1°C and thermal gradient in the solder is 168°C/cm under 104 A/cm2 current stressing, yet only 10.4°C temperature increased and thermal gradient decreased to 35°C/cm under 103 A/cm2. After verification, only less than 0.5% error is achieved between simulation results and experiment results. It proves this built model can be used to project thermal characteristic of different module designs.


Author(s):  
Daniel Callahan ◽  
G. Thomas

Oxygen impurities may significantly influence the properties of nitride ceramics with a strong dependence on the microstructural distribution of the impurity. For example, amorphous oxygen-rich grain boundary phases are well-known to cause high-temperature mechanical strength degradation in silicon nitride whereas solutionized oxygen is known to decrease the thermal conductivity of aluminum nitride. Microanalytical characterization of these impurities by spectral methods in the AEM is complicated by reactions which form oxygen-rich surface phases not representative of the bulk material. Furthermore, the impurity concentrations found in higher quality ceramics may be too low to measure by EDS or PEELS. Consequently an alternate method for the characterization of impurities in these ceramics has been investigated.Convergent beam electron diffraction (CBED) is a promising technique for the study of impurity distributions in aluminum nitride ceramics. Oxygen is known to enter into stoichiometric solutions with AIN with a consequent decrease in lattice parameter.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 483
Author(s):  
Jing Wang ◽  
Riwei Xu ◽  
Chengzhong Wang ◽  
Jinping Xiong

We report on the preparation and characterization of a novel lamellar polypyrrole using an attapulgite–sulfur composite as a hard template. Pretreated attapulgite was utilized as the carrier of elemental sulfur and the attapulgite–sulfur–polypyrrole (AT @400 °C–S–PPy) composite with 50 wt.% sulfur was obtained. The structure and morphology of the composite were characterized with infrared spectroscopy (IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). An AT @400 °C–S–PPy composite was further utilized as the cathode material for lithium–sulfur batteries. The first discharge specific capacity of this kind of battery reached 1175 mAh/g at a 0.1 C current rate and remained at 518 mAh/g after 100 cycles with capacity retention close to 44%. In the rate test, compared with the polypyrrole–sulfur (PPy–S) cathode material, the AT @400 °C–S–PPy cathode material showed lower capacity at a high current density, but it showed higher capacity when the current came back to a low current density, which was attributed to the “recycling” of pores and channels of attapulgite. Therefore, the lamellar composite with special pore structure has great value in improving the performance of lithium–sulfur batteries.


Author(s):  
Tyler J. Grimm ◽  
Amit B. Deshpande ◽  
Laine Mears ◽  
Jianxun Hu

Abstract Electrically-assisted manufacturing refers to the direct application of electrical current to a workpiece during a manufacturing process. This assistance results in several benefits such as flow stress reduction, increased elongation, reduced springback, increased diffusion, and increased precipitation control. These effects are also associated with traditional thermal assistance. However, for over half a decade it has been argued whether or not these observed effects are due to electroplasticity, a term which describes effects that cannot be fully explained through resistive heating. Several theories have been proposed as to the mechanism responsible for these purported athermal effects. Conflicting results within literature have enabled this debate over electroplasticity since its discovery in the mid 20th century. While the effects of electrically-assisted manufacturing are clearly characterized throughout literature, there is a lack of research related to control systems which may be used to take advantage of its effects. Typically, control systems are developed using an empirical approach, requiring extensive testing in order to fully characterize the stress-strain behavior at all conditions. Additionally, current research has primarily focused on reducing flow stresses during electrically-assisted processes without regard for the strength of the material subsequent to forming. Therefore, there is a strong need for a control system which can quickly be deployed for new materials and does not significantly reduce the subsequent strength of the material. Herein, a novel control approach is developed in which electrical pulses are triggered by a predetermined stress level. This stress value would be set according to the manufacturer’s stamping die strength. Once the material reaches this stress value, current is deployed until a minimum stress level is reached. At that point, the electricity is turned off and the material allowed to cool; at that stage the stress begins to elevate and the cycle continues. This approach does not require extensive pre-testing and is robust to a range of strain rate. This type of implementation can also be adapted to different levels of capability. For example, since the current is controlled by force and not by time, a low-current power supply will stay on for each pulse longer than a power supply with higher capabilities; however, each will achieve a similar effect. This study investigates the effect of several different minimum stress levels and strain rates. The strain rates chosen are relatively similar to common stamping process. This system was experimentally tested using 1018 CR steel. This control approach was found to be a successful method of maintaining a desired stress level.


Sign in / Sign up

Export Citation Format

Share Document