Heat Transfer Analysis of the Surface of a Nozzle Guide Vane in a Transonic Annular Cascade

Author(s):  
Kasem Eid Ragab ◽  
Lamyaa El-Gabry

Abstract In the current study, a numerical analysis was performed for the heat transfer over the surface of nozzle guide vanes (NGVs) using three-dimensional computational fluid dynamics (CFD) models. The investigation has taken place in two stages: the baseline nonfilm-cooled NGV and the film-cooled NGV. A finite volume based commercial code was used to build and analyze the CFD models. The investigated annular cascade has no heat transfer measurements available; hence in order to validate the CFD models against experimental data, two standalone studies were carried out on the NASA C3X vanes, one on the nonfilm-cooled C3X vane and the other on the film-cooled C3X vane. Different modeling parameters were investigated including turbulence models in order to obtain good agreement with the C3X experimental data; the same parameters were used afterward to model the industrial NGVs.

Author(s):  
Kasem E. Ragab ◽  
Lamyaa El-Gabry

Having gas turbine components that can withstand high temperatures is a key factor in improving turbine efficiency; therefore, a deeper understanding of the heat transfer phenomena associated with the flow of hot gases over Nozzle Guide Vanes (NGVs) is crucial for proper vane design and implementation of adequate cooling schemes. In this study, the heat transfer distribution over the surface of a nonfilm-cooled NGV in a transonic annular cascade (Mexit=0.89, Reexit=2.6×106) is investigated numerically using a three-dimensional computational fluid dynamics (CFD) model and compared to results from a 2-D Boundary Layer (BL) code (TEXSTAN). The CFD model has been built and analyzed using a finite volume based commercial code (ANSYS CFX). Although the industrial turbine vane is film cooled, the analysis presented will be for the uncooled vane. In order to validate the CFD model against experimental data, a study is carried out on the NASA C3X vane; a CFD model of the C3X vane was built and several modeling parameters are varied in order to obtain good agreement with the experimental data. In addition, the numerical results are compared to those of other analytical and numerical simulations of the C3X vane. The methods found to yield the best agreement for the C3X are implemented in the modeling of the industrial NGV.


Author(s):  
Kasem E. Ragab ◽  
Lamyaa El-Gabry

One of the approaches adopted to improve turbine efficiency and increase power to weight ratio is reducing vane count. In the current study, numerical analysis was performed for the heat transfer over the surface of nozzle guide vanes under the condition of reduced vane count using three dimensional computational fluid dynamics (CFD) models. The investigation has taken place in two stages: the baseline nonfilm-cooled nozzle guide vane, and the film-cooled nozzle guide vane. A finite volume based commercial code (ANSYS CFX 15) was used to build and analyze the CFD models. The investigated annular cascade has no heat transfer measurements available; hence in order to validate the CFD models against experimental data, two standalone studies were carried out on the NASA C3X vanes, one on the nonfilm-cooled C3X vane and the other on the film-cooled C3X vane. Different modelling parameters were investigated including turbulence models in order to obtain good agreement with the C3X experimental data, the same parameters were used afterwards to model the industrial nozzle guide vanes. Three Shear Stress Transport (SST) turbulence model variations were evaluated, the SST with Gamma-Theta transition model was found to yield the best agreement with the experimental results; model capabilities were demonstrated when the laminar to turbulent transition took place.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
G. L. Arunkumar ◽  
Balachandra P. Shetty ◽  
R. K. Mishra

Abstract This paper presents a computational method to investigate cooling performance of NASA-C3X cascade vane coated with thermal barrier coating (TBC), for which experimental data are available. The vane was cooled internally by air flows through radially oriented 10 channels. A three-dimensional conjugate heat transfer simulation has been performed which allows the conduction-convection on metal vane by eliminating need of multiple boundary solutions. The predicted aerodynamic and thermal loads with the effect of turbulent intensity is found to be good agreement with experimental data and inclusion of TBC leads to quantitative reduction in vane metal temperature.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
G. L. Arunkumar ◽  
Balachandra P. Shetty ◽  
R. K. Mishra

AbstractThis paper presents a computational method to investigate cooling performance of NASA-C3X cascade vane coated with thermal barrier coating (TBC), for which experimental data are available. The vane was cooled internally by air flows through radially oriented 10 channels. A three-dimensional conjugate heat transfer simulation has been performed which allows the conduction-convection on metal vane by eliminating need of multiple boundary solutions. The predicted aerodynamic and thermal loads with the effect of turbulent intensity is found to be good agreement with experimental data and inclusion of TBC leads to quantitative reduction in vane metal temperature.


1992 ◽  
Vol 114 (4) ◽  
pp. 741-746 ◽  
Author(s):  
S. P. Harasgama ◽  
C. D. Burton

Results have been presented on the heat transfer characteristics of the film cooled endwall (platform) of a turbine nozzle guide vane in an annular cascade at engine representative conditions in a companion paper by Harasgama and Burton (1992). The present paper reports on the analysis of these measurements. The experimental results are well represented by the superposition theory of film cooling. It is shown that high cooling effectiveness can be achieved when the data are corrected for axial pressure gradients. The data are correlated against both the slot-wall jet parameter and the discrete hole injection function for flat-plate, zero pressure gradient cases. The pressure gradient correction brings the present data to within ± 11 percent of the discrete hole correlation. Preliminary predictions of heat transfer reduction have been carried out using the STANCOOL program. These indicate that the code can predict the magnitude of heat transfer reduction correctly, although the absolute values are not in good agreement. This is attributed to the three-dimensional nature of the flow at the endwall.


2011 ◽  
Vol 134 (3) ◽  
Author(s):  
Umesh Javiya ◽  
John W. Chew ◽  
Nicholas J. Hills ◽  
Leisheng Zhou ◽  
Mike Wilson ◽  
...  

The accuracy of computational fluid dynamics (CFD) for the prediction of flow and heat transfer in a direct transfer preswirl system is assessed through a comparison of CFD results with experimental measurements. Axisymmetric and three-dimensional (3D) sector CFD models are considered. In the 3D sector models, the preswirl nozzles or receiver holes are represented as axisymmetric slots so that steady state solutions can be assumed. A number of commonly used turbulence models are tested in three different CFD codes, which were able to capture all of the significant features of the experiments. A reasonable quantitative agreement with experimental data for static pressure, total pressure, and disk heat transfer is found for the different models, but all models gave results that differ from the experimental data in some respect. The more detailed 3D geometry did not significantly improve the comparison with experiment, which suggests deficiencies in the turbulence modeling, particularly in the complex mixing region near the preswirl nozzle jets. The predicted heat transfer near the receiver holes was also shown to be sensitive to near-wall turbulence modeling. Overall, the results are encouraging for the careful use of CFD in preswirl-system design.


Author(s):  
Umesh Javiya ◽  
John Chew ◽  
Nick Hills ◽  
Leisheng Zhou ◽  
Mike Wilson ◽  
...  

The accuracy of computational fluid dynamics (CFD) for the prediction of flow and heat transfer in a direct transfer pre-swirl system is assessed through a comparison of CFD results with experimental measurements. Axisymmetric and three dimensional (3D) sector CFD models are considered. In the 3D sector models, the pre-swirl nozzles or receiver holes are represented as axisymmetric slots so that steady state solutions can be assumed. A number of commonly used turbulence models are tested in three different CFD codes, which were able to capture all of the significant features of the experiments. Reasonable quantitative agreement with experimental data for static pressure, total pressure and disc heat transfer is found for the different models, but all models gave results which differ from the experimental data in some respect. The more detailed 3D geometry did not significantly improve the comparison with experiment, which suggested deficiencies in the turbulence modelling, particularly in the complex mixing region near the pre-swirl nozzle jets. The predicted heat transfer near the receiver holes was also shown to be sensitive to near-wall turbulence modelling. Overall, the results are encouraging for the careful use of CFD in pre-swirl-system design.


Author(s):  
N. W. Harvey ◽  
T. V. Jones

Detailed measurements of surface static pressures and heat transfer rates on the aerofoil and hub end wall of an annular nozzle guide vane (in the absence of a downstream rotor) are presented. Heat transfer rates have been measured using thin film gauges in an annular cascade in the Pyestock Isentropic Light Piston Cascade. Test Mach numbers, Reynolds numbers and cascade geometry are fully representative of engine conditions. The results of 3-D calculations of surface Mach number and 2-D calculations of aerofoil heat transfer are presented and compared with the measurements. A new method of calculating end wall heat transfer using the axisymmetric analogue for three-dimensional boundary layers is described in detail. The method uses a 3-D Euler solver to calculate the inviscid surface streamlines along which heat transfer coefficients are calculated. The metric coefficient which describes the lateral convergence or divergence of the streamlines is used to include three-dimensional effects in the calculation. The calculated heat transfer rates compare well with the measured values. Reference is made to surface flow visualization in the interpretation of the results.


Author(s):  
S. P. Harasgama ◽  
C. D. Burton

Results have been presented on the heat transfer characteristics of the film cooled endwall (platform) of a turbine nozzle guide vane in an annular cascade at engine representative conditions in a companion paper by Harasgama and Burton (1991). The present paper reports on the analysis of these measurements. The experimental results are well represented by the superposition theory of film cooling. It is shown that high cooling effectiveness can be achieved when the data are corrected for axial pressure gradients. The data are correlated against both the slot-wall jet parameter and the discrete hole injection function for flat-plate, zero pressure gradient cases. The pressure gradient correction brings the present data to within ± 11% of the discrete hole correlation. Preliminary predictions of heat transfer reduction have been carried out using the STANCOOL program. These indicate that the code can predict the magnitude of heat transfer reduction correctly, although the absolute values are not in good agreement. This is attributed to the three-dimensional nature of the flow at the endwall.


Author(s):  
F. Mumic ◽  
L. Ljungkruna ◽  
B. Sunden

In this work, a numerical study has been performed to simulate the heat transfer and fluid flow in a transonic high-pressure turbine stator vane passage. Four turbulence models (the Spalart-Allmaras model, the low-Reynolds-number realizable k-ε model, the shear-stress transport (SST) k-ω model and the v2-f model) are used in order to assess the capability of the models to predict the heat transfer and pressure distributions. The simulations are performed using the FLUENT commercial software package, but also two other codes, the in-house code VolSol and the commercial code CFX are used for comparison with FLUENT results. The results of the three-dimensional simulations are compared with experimental heat transfer and aerodynamic results available for the so-called MT1 turbine stage. It is observed that the predictions of the vane pressure field agree well with experimental data, and that the pressure distribution along the profile is not strongly affected by choice of turbulence model. It is also shown that the v2-f model yields the best agreement with the measurements. None of the tested models are able to predict transition correctly.


Sign in / Sign up

Export Citation Format

Share Document