scholarly journals Solitary Wave Dynamics Governed by the Modified FitzHugh–Nagumo Equation

Author(s):  
Aleksandra Gawlik ◽  
Vsevolod Vladimirov ◽  
Sergii Skurativskyi

Abstract The paper deals with the studies of the nonlinear wave solutions supported by the modified FitzHugh–Nagumo (mFHN) system. It was proved in our previous work that the model, under certain conditions, possesses a set of soliton-like traveling wave (TW) solutions. In this paper, we show that the model has two solutions of the soliton type differing in propagation velocity. Their location in parametric space, and stability properties are considered in more details. Numerical results accompanied by the application of the Evans function technique prove the stability of fast solitary waves and instability of slow ones. A possible way of formation and annihilation of localized regimes in question is studied therein too.

2021 ◽  
Vol 21 (1) ◽  
pp. 91-104
Author(s):  
MAHA S.M. SHEHATA ◽  
HADI REZAZADEH ◽  
EMAD H.M. ZAHRAN ◽  
MOSTAFA ESLAMI ◽  
AHMET BEKIR

In this paper, new exact traveling wave solutions for the coupling Boiti-Leon-Pempinelli system are obtained by using two important different methods. The first is the modified extended tanh function methods which depend on the balance rule and the second is the Ricatti-Bernoulli Sub-ODE method which doesn’t depend on the balance rule. The solitary waves solutions can be derived from the exact wave solutions by give the parameters a special value. The consistent and inconsistent of the obtained solutions are studied not only between these two methods but also with that relisted by the other methods.


The Korteweg-de Vries equation, which describes the unidirectional propagation of long waves in a wide class of nonlinear dispersive systems, is well known to have solutions representing solitary waves. The present analysis establishes that these solutions are stable, confirming a property that has for a long time been presumed. The demonstration of stability hinges on two nonlinear functionals which for solutions of the Korteweg-de Vries equation are invariant with time: these are introduced in § 2, where it is recalled that Boussinesq recognized their significance in relation to the stability of solitary waves. The principles upon which the stability theory is based are explained in § 3, being supported by a few elementary ideas from functional analysis. A proof that solitary wave solutions are stable is completed in § 4, the most exacting steps of which are accomplished by means of spectral theory. In appendix A a method deriving from the calculus of variations is presented, whereby results needed for the proof of stability may be obtained independently of spectral theory as used in § 4. In appendix B it is shown how the stability analysis may readily be adapted to solitary-wave solutions of the ‘regularized long-wave equation’ that has recently been advocated by Benjamin, Bona & Mahony as an alternative to the Korteweg-de Vries equation. In appendix C a variational principle is demonstrated relating to the exact boundaryvalue problem for solitary waves in water: this is a counterpart to a principle used in the present work (introduced in §2) and offers some prospect of proving the stability of exact solitary waves.


Author(s):  
D. P. Bennett ◽  
R. W. Brown ◽  
S. E. Stansfield ◽  
J. D. Stroughair ◽  
J. L. Bona

A theory is developed relating to the stability of solitary-wave solutions of the so-called Benjamin-Ono equation. This equation was derived by Benjamin (5) as a model for the propagation of internal waves in an incompressible non-diffusive heterogeneous fluid for which the density is non-constant only within a layer whose thickness is much smaller than the total depth. In his article, Benjamin wrote in closed form the one-parameter family of solitary-wave solutions of his model equation whose stability will be the focus of attention presently.


2019 ◽  
Vol 30 (11) ◽  
pp. 1950087 ◽  
Author(s):  
Sharanjeet Dhawan ◽  
Turgut Ak ◽  
Gokhan Apaydin

In this paper, we analyze equal width wave equation using multi-quadric quasi-interpolation (MQQI) scheme. The traveling wave solutions called solitary waves: Single solitary wave motion, interaction of two and three solitary waves and evolution of solitons have been investigated computationally. Several comparisons are made to demonstrate the effectiveness of the proposed method. Error norms are used to observe the accuracy and efficiency of this scheme.


1990 ◽  
Vol 114 (3-4) ◽  
pp. 195-212 ◽  
Author(s):  
P. E. Souganidis ◽  
W. A. Strauss

SynopsisThis paper studies the stability and instability properties of solitary wave solutions φ(x – ct) of a general class of evolution equations of the form Muttf(u)x=0, which support weakly nonlinear dispersive waves. It turns out that, depending on their speed c and the relation between the dispersion (i.e. the order of the pseudodifferential operator) and the nonlinearity, travelling waves maybe stable or unstable. Sharp conditions to that effect are given.


Author(s):  
João-Paulo Dias ◽  
Mário Figueira ◽  
Filipe Oliveira

We prove the existence of solitary wave solutions to the quasilinear Benney systemwhere , –1 < p < +∞ and a, γ > 0. We establish, in particular, the existence of travelling waves with speed arbitrarily large if p < 0 and arbitrarily close to 0 if . We also show the existence of standing waves in the case , with compact support if – 1 < p < 0. Finally, we obtain, under certain conditions, the linearized stability of such solutions.


2016 ◽  
Vol 12 (3) ◽  
Author(s):  
Jiyu Zhong ◽  
Shengfu Deng

In this paper, we investigate the traveling wave solutions of a two-component Dullin–Gottwald–Holm (DGH) system. By qualitative analysis methods of planar systems, we investigate completely the topological behavior of the solutions of the traveling wave system, which is derived from the two-component Dullin–Gottwald–Holm system, and show the corresponding phase portraits. We prove the topological types of degenerate equilibria by the technique of desingularization. According to the dynamical behaviors of the solutions, we give all the bounded exact traveling wave solutions of the system, including solitary wave solutions, periodic wave solutions, cusp solitary wave solutions, periodic cusp wave solutions, compactonlike wave solutions, and kinklike and antikinklike wave solutions. Furthermore, to verify the correctness of our results, we simulate these bounded wave solutions using the software maple version 18.


2008 ◽  
Vol 18 (01) ◽  
pp. 219-225 ◽  
Author(s):  
DANIEL TURZÍK ◽  
MIROSLAVA DUBCOVÁ

We determine the essential spectrum of certain types of linear operators which arise in the study of the stability of steady state or traveling wave solutions in coupled map lattices. The basic tool is the Gelfand transformation which enables us to determine the essential spectrum completely.


2020 ◽  
Vol 30 (03) ◽  
pp. 2050036 ◽  
Author(s):  
Jibin Li ◽  
Guanrong Chen ◽  
Jie Song

For three two-component shallow water wave models, from the approach of dynamical systems and the singular traveling wave theory developed in [Li & Chen, 2007], under different parameter conditions, all possible bounded solutions (solitary wave solutions, pseudo-peakons, periodic peakons, as well as smooth periodic wave solutions) are derived. More than 19 explicit exact parametric representations are obtained. Of more interest is that, for the integrable two-component generalization of the Camassa–Holm equation, it is found that its [Formula: see text]-traveling wave system has a family of pseudo-peakon wave solutions. In addition, its [Formula: see text]-traveling wave system has two families of uncountably infinitely many solitary wave solutions. The new results complete a recent study by Dutykh and Ionescu-Kruse [2016].


2020 ◽  
Vol 34 (29) ◽  
pp. 2050282
Author(s):  
Asıf Yokuş ◽  
Doğan Kaya

The traveling wave solutions of the combined Korteweg de Vries-modified Korteweg de Vries (cKdV-mKdV) equation and a complexly coupled KdV (CcKdV) equation are obtained by using the auto-Bäcklund Transformation Method (aBTM). To numerically approximate the exact solutions, the Finite Difference Method (FDM) is used. In addition, these exact traveling wave solutions and numerical solutions are compared by illustrating the tables and figures. Via the Fourier–von Neumann stability analysis, the stability of the FDM with the cKdV–mKdV equation is analyzed. The [Formula: see text] and [Formula: see text] norm errors are given for the numerical solutions. The 2D and 3D figures of the obtained solutions to these equations are plotted.


Sign in / Sign up

Export Citation Format

Share Document