scholarly journals Design optimization of supercritical carbon dioxide (s-CO2) cycles for waste heat recovery from marine engines

2021 ◽  
pp. 1-44
Author(s):  
Md. J. Hossain ◽  
Jahedul Islam Chowdhury ◽  
Nazmiye Balta-Ozkan ◽  
Faisal Asfand ◽  
Syamimi Saadon ◽  
...  

Abstract The global climate change challenge and the international commitment to reduce carbon emission can be addressed by improving energy conversion efficiency and adopting efficient waste heat recovery technologies. Supercritical carbon dioxide (s-CO2) cycles that offer a compact footprint and higher cycle efficiency are investigated in this study to utilize the waste heat of the exhaust gas from a marine diesel engine (Wärtsilä-18V50DF, 17.55 MW). Steady-state models of basic, recuperated and reheated s-CO2 Brayton cycles are developed and optimised for net work and thermal efficiency in Aspen Plus to simulate and compare their performances. Results show that the reheated cycle performs marginally better than the recuperated cycle accounting for the highest optimised net-work and thermal efficiency. For the reheated and recuperated cycle, the optimized net-work ranges from 648–2860 kW and 628–2852 kW respectively, while optimized thermal efficiency ranges are 15.2–36.3% and 14.8–35.6% respectively. Besides, an energy efficiency improvement of 6.3% is achievable when the engine is integrated with an s-CO2 waste heat recovery system which is operated by flue gas with a temperature of 373 °C and mass flow rate of 28.2 kg/s, compared to the engine without a heat recovery system.

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Gunabal S

Waste heat recovery systems are used to recover the waste heat in all possible ways. It saves the energy and reduces the man power and materials. Heat pipes have the ability to improve the effectiveness of waste heat recovery system. The present investigation focuses to recover the heat from Heating, Ventilation, and Air Condition system (HVAC) with two different working fluids refrigerant(R410a) and nano refrigerant (R410a+Al2O3). Design of experiment was employed, to fix the number of trials. Fresh air temperature, flow rate of air, filling ratio and volume of nano particles are considered as factors. The effectiveness is considered as response. The results were analyzed using Response Surface Methodology


2021 ◽  
Vol 234 ◽  
pp. 113947
Author(s):  
Alexandre Persuhn Morawski ◽  
Leonardo Rodrigues de Araújo ◽  
Manuel Salazar Schiaffino ◽  
Renan Cristofori de Oliveira ◽  
André Chun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document