Multi objective optimization of structural parameters of air-cooled system for lithium battery pack based on surrogate model

Author(s):  
Nengsheng Bao ◽  
Wei Li ◽  
Ma Chong ◽  
Fan Yuchen ◽  
Li Tuyan

Abstract The new energy electric vehicle, which takes clean electric energy as the main driving force, has no pollutants and exhaust emissions during its operation. And has a higher energy utilization ratio than the fuel locomotive. Therefore, electric vehicles have been widely developed in recent years. The maximum temperature and temperature consistency of battery pack in electric vehicle have great influence on the life and safety of battery. In this paper, the thermal management system of lithium battery pack was taken as the research object. The temperature distribution and uniformity of battery pack under different heat dissipation conditions were analyzed based on computational fluid dynamics (CFD). The multi-objective optimization method of battery pack thermal management system was carried out by combining sur-rogate model with fast non-dominated sorting genetic algorithm (NSGA-II). The maximum temperature of the battery pack obtained from candidate point 1 is 310.72K, which is 4.99K lower than the initial model temperature, and the temperature standard deviation is 0.76K, with a reduction rate of 51.9%. Experiment results showed that maximum difference between the optimized and experimental value of the maximum temperature is 0.8K, and the error was within 1K. Therefore, the multi-objective optimization method proposed in this paper has high accuracy.

Author(s):  
Yuanzhi Liu ◽  
Payam Ghassemi ◽  
Souma Chowdhury ◽  
Jie Zhang

This paper proposes a novel and flexible J-type air-based battery thermal management system (BTMS), by integrating conventional Z-type and U-type BTMS. With two controlling valves, the J-type BTMS can be adaptively controlled in real time to help balance the temperature uniformity and energy efficiency under various charging/discharging situations (especially extreme fast changing). Results of computational fluid dynamics simulations show that the J-type system performs better than the U-type and Z-type systems. To further improve the thermal performance of the proposed J-type BTMS, a surrogate-based multi-objective optimization is performed, with the consideration of the two major objectives, i.e., uniformity and energy efficiency. The concurrent surrogate selection (COSMOS) framework is adopted in this paper to determine the most suitable surrogate models. Optimization results show that: (i) the uniformity of the temperature distribution is improved by 38.6% compared to the benchmark, (ii) the maximum temperature is reduced by 19.1%, and (iii) the pressure drop is decreased by 14.5%.


Author(s):  
Xiangping Liao ◽  
Chong Ma ◽  
Xiongbin Peng ◽  
Yuwu Li ◽  
Lianfeng Duan ◽  
...  

Abstract Battery thermal management system is critical to prevent the battery pack from such safety issues as overheating, thermal runaway, and spontaneous combustion. Many research works have been done to improve the thermal performance of the thermal management system by reducing the maximum temperature of the battery pack. However, the temperature difference and energy consumption were not discussed in most of the researches. This paper proposed a framework of optimal design of the battery thermal management system using surrogate model and multi-objective optimization methodology. The accuracy of this method was then validated through two cases. The proposed framework aims to find a way to design a battery pack with at least two types of the following objectives: the smallest maximum temperature, smallest temperature deviation, and the lowest energy consumption. The framework can be divided into five steps: the structural design of the battery thermal management system; the fluid–solid coupled heat transfer modeling using computational fluid dynamics (CFD) method; the design of experiments and selection of surrogate models; the multi-objective optimization algorithm based on Pareto optimal solution; and the experimental verification. The optimized designs showed significant improvement by decreasing both the temperature rise and the energy consumption.


Author(s):  
Sanjay Srinivaas ◽  
Wei Li ◽  
Akhil Garg ◽  
Xiongbin Peng ◽  
Liang Gao

Abstract Lithium-ion batteries are currently being produced and used in large quantities in the automobile sector as a clean alternative to fossil fuels. The thermal behavior of the battery pack is a very important criterion, which is not only essential for safety but also has an equally important role in the capacity and life cycle of the batteries. The liquid battery thermal management system is a very efficient type of thermal management system, and mini-channel-based liquid cooling systems are one of the most popular type of the battery thermal management system and have been researched extensively. This paper mainly intends to study the effects of tapering, the addition of grooves to the channel, the use of different nanofluids, and the flow direction of coolant on the thermal performance of the battery pack using a three-dimensional computational fluid dynamics model. The results suggest that converging channels can be used to control the temperature rise, while diverging channels can be used to control the temperature deviation. The addition of grooves and the use of nanofluids were beneficial in reducing the temperature rise. The final setups were able to reduce the maximum temperature rise by 2.267 K with a substantial pressure drop increase and by 1.513 K with an increase in pressure drop of only 19.92%.


Heat Transfer ◽  
2020 ◽  
Vol 49 (5) ◽  
pp. 2686-2705 ◽  
Author(s):  
Veeraj V. Shet ◽  
Babu R. Ponangi ◽  
Kiran Jacob

2014 ◽  
Vol 563 ◽  
pp. 362-365
Author(s):  
Chao Jiang ◽  
Zhi Guo Tang ◽  
Jia Xin Hao ◽  
Hui Qing Li

Effective thermal management of battery pack is essential for electric vehicle to adapt to different kinds of external environment, achieve desired working efficiency and life cycle of the power batteries. In this paper, a novel thermal management system is designed for battery pack in electric vehicle. Visualized simulation analysis of the thermal management system is carried on under different working conditions by CFD, then the structure parameters will be optimized. According to the conclusion, the thermal management system has been indicated to be effective to ensure an appropriate temperature range and the normal work of the power batteries in electric vehicle.


2021 ◽  
Vol 11 (15) ◽  
pp. 7089
Author(s):  
Thomas Imre Cyrille Buidin ◽  
Florin Mariasiu

The battery thermal management system is one of the important systems of an electric vehicle with direct effects on its performance. In this regard, this paper proposes a mathematical model that increases the accuracy of data obtained by numerical analysis of the temperature inside battery packs. The activity of the design and development (as accurate as possible) of a battery pack leads to an increase in the life of the battery cells and of the energetic efficiency of the electric vehicle in the specific operating conditions of road traffic. The research methodology of the thermal phenomenon in the battery pack, presented by the authors, is based on an efficient co-simulation concept consisting of steady-state CFD simulations and transient 1D simulations using a new mathematical model for the thermal behavior of a lithium-ion (Li-ion) cylindrical battery and applied in a battery pack’s forced air cooling thermal management system. Comparing the obtained results, it was found that the use of the model provides more accurate calculations of the local thermal performance of the air cooling system, with a direct influence on optimizing its design and construction. It is also highlighted that using the proposed model for higher heat transfer coefficient values (increase in air flow), offers more accurate data compared to other models, with immediate benefits in the proper design and development of the battery’s thermal management system.


Author(s):  
Shuoqi Wang ◽  
Languang Lu ◽  
Dongsheng Ren ◽  
Xuning Feng ◽  
Shang Gao ◽  
...  

Thermal management system (TMS) plays an essential part in improving the safety and durability of the battery pack. Prior studies mainly focused on controlling the maximum temperature and temperature difference of the battery pack. Little attention has been paid to the influence of the TMS on thermal runaway (TR) prevention of battery packs. In this paper, a heat pipe-based thermal management system (HPTMS) is designed and investigated to illustrate both the capabilities of temperature controlling and TR propagation preventing. Good thermal performance could be achieved under discharge and charge cycles of both 2 C rate and 3 C rate while the equivalent heat dissipation coefficient of the HPTMS is calculated above 70 W/(m2·K). In the TR propagation test triggered by overcharge, the surface temperature of the battery adjacent to the overcharged cell can be controlled below 215 °C, the onset temperature of TR obtained by the adiabatic TR test of a single cell. Therefore, TR propagation is prevented due to the high heat dissipation of the HPTMS. To conclude, the proposed HPTMS is an effective solution for the battery pack to maintain the operating temperature and improve the safety level under abuse conditions.


Sign in / Sign up

Export Citation Format

Share Document