Effects of Thin Film Heat Spreader on Hot Spots Mitigation in Heat Sinks

Author(s):  
Sohail Reddy ◽  
George S. Dulikravich ◽  
Ann-Kayana Blanchard

Abstract The effects of graphene platelets and diamond based thin film heat spreaders on maximum temperature of integrated electronic circuits were investigated. A fully three-dimensional conjugate heat transfer analysis was performed to investigate the effects of thin film material and thickness on the temperature of a hot spot and temperature uniformity on the heated surface of the integrated circuit when subjected to forced convective cooling. Two different materials, diamond and graphene were simulated as materials for thin films. The thin film heat spreaders were applied to the top wall of an array of micro pin-fins having circular cross sections. The integrated circuit with a 4 × 3 mm footprint featured a 0.5 × 0.5 mm hot spot located on the top wall which was also exposed to a uniform background heat flux of 500 W cm−1. A hot spot uniform heat flux of magnitude 2000 W cm−2 was centrally situated on the top surface over a small area of 0.5 × 0.5 mm. Both isotropic and anisotropic properties of the thin film heat spreaders made of graphene platelets and diamond were computationally analyzed. The conjugate heat transfer analysis incorporated thermal contact resistance between the thin film and the silicon substrate. The isotropic thin film heat spreaders significantly reduced the hot spot temperature and increased temperature uniformity, allowing for increased thermal loads. Furthermore, it was found that thickness of the thin film heat spreader need not be greater than a few tens of microns

Author(s):  
Duccio Griffini ◽  
Massimiliano Insinna ◽  
Simone Salvadori ◽  
Francesco Martelli

A high-pressure vane equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side while the leading edge is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and high-pressure vanes are then investigated considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first one where hot spot and swirl core are aligned with passage and the second one where they are aligned with the leading edge. Comparisons between metal temperature distributions obtained from conjugate heat transfer simulations are performed evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The leading edge aligned configuration is resulted to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage aligned case. A strong sensitivity of both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.


Author(s):  
Ron-Ho Ni ◽  
William Humber ◽  
George Fan ◽  
John P. Clark ◽  
Richard J. Anthony ◽  
...  

Conjugate heat transfer analysis was conducted on a 648 hole film cooled turbine vane using Code Leo and compared to experimental results obtained at the Air Force Research Laboratory Turbine Research Facility. An unstructured mesh with fully resolved film holes for both fluid and solid domains was used to conduct the conjugate heat transfer simulation on a desktop PC with eight cores. Initial heat flux and surface metal temperature predictions showed reasonable agreement with heat flux measurements but under prediction of surface metal temperature values. Root cause analysis was performed, leading to two refinements. First, a thermal barrier coating layer was introduced into the analysis to account for the insulating properties of the Kapton layer used for the heat flux gauges. Second, inlet boundary conditions were updated to more accurately reflect rig measurement conditions. The resulting surface metal temperature predictions showed excellent agreement relative to measured results (+/− 5 degrees K).


Author(s):  
Tanweer Alam ◽  
Rakesh Kumar

Heat transfer analysis is the one of the most important designing aspects for many engineering systems. The design prospect in the preview of heat transfer focuses on the prediction of heat flux with the help of measured transient temperature data. Thin film gauges are one of the most predominant method for the heat flux prediction especially for short duration transient temperature measurement. Thin film gauges are usually exposed to the heated environment for the measurement purpose. However, there are some prominent research areas like ablation phenomenon met to spacecraft thermal shields during re-entry to the atmosphere, for which direct exposure of the thin film gauge to the heated environment causes the functional and working difficulties associated with the gauge. In the present study, it is aimed to investigate the suitability of thin film gauge for the conduction-based short duration measurement. An experimental set up is fabricated, which is used to supply the heat load to the hand-made thin film gauge using platinum as sensing element and quartz as a substrate. The transient temperature data is recorded during experiment is further compared with the simulated temperature histories obtained through finite element analysis. The heat flux estimation for both the analysis is made using measured transient temperature data by convolute integral of one- dimensional heat conduction equation. The estimated heat flux value for the experimental and numerical result is found to be in excellent agreement.


Author(s):  
Christopher Oshman ◽  
Qian Li ◽  
Li-Anne Liew ◽  
Ronggui Yang ◽  
Y. C. Lee ◽  
...  

We report the successful fabrication and application of a micro-scale hybrid liquid wicking structure in flat polymer-based heat spreaders to improve the heat transfer performance under gravitational acceleration. The hybrid wick consists of 100 μm high, 200 μm wide square electroformed high aspect ratio copper micro-pillars with 31 μm spacing for liquid flow. A woven copper mesh with 51 μm diameter and 76 μm spacing was bonded to the top surface of the pillars to enhance evaporation and condensation heat transfer. The exterior device geometry is 40 mm × 40 mm × 1.0 mm. The 100 μm thick liquid crystal polymer (LCP) casing contains a two-dimensional array of copper filled vias to reduce the overall thermal resistance. The device was tested with heat flux input of up to 63 W/cm2 at horizontal and vertical orientations. The difference in temperature between the evaporator and condenser was measured and compared to a copper reference block of identical exterior dimensions. The experimentally determined thermal resistance of the copper block remained nearly constant at 1.2 K/W. The thermal resistance of the flat polymer heat spreader at horizontal orientation was 0.55 K/W. The same device at −90° adverse orientation resulted in a thermal resistance of 0.60 K/W. These measurements indicate that this hybrid wicking structure is capable of providing a capillary pumping pressure that is effective at transferring at least 63 W/cm2 heat flux regardless of orientation. This work illustrates an important step to developing more effective thermal management strategies for the next generation of heat generating components and the possibility of developing flexible, polymer-based heat spreaders fabricated with standardized printed circuit board technologies.


Author(s):  
Houssein Ammar ◽  
David Hamadi ◽  
Bertrand Garnier ◽  
Ahmed Ould El Moctar ◽  
Hassan Peerhossaini ◽  
...  

Heat-transfer analysis in microfluidic devices is of great importance in applications such as micro-heat exchangers and microreactors. This work reports on improvements in temperature measurement techniques, which can be the source of large errors due to their intrusiveness and the unreliability of conventional thermal sensors. Gold thin films were deposited on a borosilicate substrate to realize a 2D heat flux sensor for heat-transfer measurement along the main flow within microchannels. Two applications are shown, one related to micro-heat exchangers and the other to microreactors. For the micro-heat exchanger, the effect of length scale on heat transfer in a straight microchannel was investigated and the validity of macroscale correlations for convective heat transfer was checked for deionized water flowing in microchannels of heights 12 to 52 μm. For the microreactor, the reaction enthalpy of an acid–base reaction measured using the new heat-flux sensor had only a 5% discrepancy from the standard value, showing the efficiency of the new thin-film device.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Duccio Griffini ◽  
Massimiliano Insinna ◽  
Simone Salvadori ◽  
Francesco Martelli

A high-pressure vane (HPV) equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side, while the leading edge (LE) is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-averaged Navier–Stokes simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and HPVs are then investigated, considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first in which hot spot and swirl core are aligned with passage; and the second in which they are aligned with the LE. Comparisons between metal temperature distributions obtained from conjugate heat transfer (CHT) simulations are performed, evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The LE aligned configuration is determined to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage-aligned case. A strong sensitivity to both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.


Author(s):  
Sohail R. Reddy ◽  
Abas Abdoli ◽  
George S. Dulikravich ◽  
Rajesh Jha

The effects of thin film coating on maximum temperature of integrated electric circuits are investigated. A fully three-dimensional conjugate heat transfer analysis was performed to investigate the effects of thin film material and thickness on the temperature of a hot spot. Two different materials, diamond and graphene nano-platelets were simulated as materials for thin films. The thin film heat spreaders were applied to the top wall of the three optimized arrays of micro pin-fins having circular, airfoil and convex cross sections. The electronic chip with a 4 × 3 mm footprint featured a 0.5 × 0.5 mm hot spot located on the top wall which was exposed to a uniform high-level background heat flux. The effective area of coverage of the thin films was also investigated computationally. It was found that thin film heat spreaders significantly reduce the hot spot temperature, allowing for increased thermal loads and therefore increased performance. Furthermore, it was found that thickness of the thin film heat spreader does not have to be greater than a few tens of microns.


Author(s):  
Jiangtao Cheng ◽  
Chung-Lung Chen

We report an electrowetting-controlled cooling system with site-specific treatments on the heat source (evaporator or hot spot) surfaces. Electrowetting-on-dielectric (EWOD) has great potential in thermal management because EWOD-driven droplet transport has unique characteristics of prompt response, low power consumption and programmable paths without the need for any mechanical moving parts. Prompt and fast droplet transport is necessary for adaptive and active cooling of high heat flux targets. Using a multi-channel DC/AC control system, we carried out sequenced activation of AC voltages on coplanar electrodes and transmitted a droplet to the spot target along a programmable path. With high positioning accuracy at the chip level, we have successfully transmitted a water droplet of 15 μL at speeds as high as ∼10 cm/s. We further improved electrowetting cooling performance by coating a fine copper screen on the cooling targets. The capillarity associated with the copper screen facilitates the delivered droplets automatically spreading and clinging to the target surfaces. As a result, heat transfer is in the more efficient form of filmwise evaporation at the evaporator sites. To maintain a thin film with proper thickness on the hot spots, we implemented EWOD-assisted droplet splitting and merging to precisely control the droplet volume to avoid fluid flooding (accumulation) on the hot spot surfaces. Our investigation indicates that thin-film evaporation is a high-efficiency heat transfer mechanism on a hydrophilized hot spot surface. Based on EWOD technique with surface treatments, the superheat on a hot spot of 4mm × 4mm was maintained well below 30°C even when the heat flux reached as high as 80W/cm2. The closed loop of this novel thermal management system can potentially function as a wickless vapor chamber or heat pipe with enhanced heat dissipation capabilities.


Sign in / Sign up

Export Citation Format

Share Document